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Ionospheric Plasma Outflow in Response to Transverse Ion

Heating: Self-Consistent Macroscopic Treatment

Grant # NAGW-2903, NASA/Headquarters

P.I.: Dr. N. Singh

Brief Summary of Work Performed Since July 1_ 1993:

In the previous grant year we examined the effect of transverse ion heating on the polar wind

outflow using both a hydrodynamic model [Singh, 1992] and a semikinetic, small-scale simulation

model [Singh and Chan, 1993]. These studies demonstrated that the transverse ion heating

creates significant plasma perturbations in the polar wind; the perturbation consists of (1) plasma

cavity formation for extended heating, (2) formation of a density depletion and an enhancement

on its top in response to a localized heating, (3) generation of upward pointing electric fields like

in a double layer in response to a localized heating, and (4) generation of waves by the ion-ion
instability.

The direct observational evidence of the cavity formation in response to the transverse

heating came from recent rocket experiments called TOPAZ I and III. The experiments revealed

that filamentary cavities, with depletions as high as 80% and aligned with the Earth's magnetic

field, occur at altitudes - 103 km. These cavities were observed in conjunction with intense lower

hybrid waves and transversely heated ions [Kinter et al, 1992]. As the rocket cut across the

filamentary plasma cavities with width -50 m, the waves appear as spikes with a duration of 50

ms. The original interpretation of the cavity formation was given in terms of lower hybrid wave

collapse [Vago et al, 1992].

We examined the various likely processes for creating the cavities and found that the mirror

force acting on the transversely heated ions is the most likely mechanism [Singh, 1994; Singh and

Chan, 1993]. The pondermotive force causing the wave collapse was found to be a much weaker

force than the mirror force on the transversely heated ions observed inside the cavities along with
the lower hybrid waves.

Using a hydrodynamic model for the polar wind we modeled the cavity formation and found

that for the heating rate obtained from the observed waves, the mirror force does create cavities

with depletions as observed. Some initial results from this study were published in a recent

Geophysical Research Letters [Singh, 1994] and were reported in the Fall AGU meeting in San

Trancisco. We have continued this investigation using a large-scale semikinetic model.





We havealsocontinuedour investigation on the microprocesses driven by the transverse ion

heating [Singh and Chan, 1993]. In the previous study we performed simulations using a small-

scale semikinetic code. We have extended this code to be fully kinetic by treating both electrons

and ions kinetically. The goal of this study is to examine how the process of the transverse ion

heating energizes electrons parallel to the magnetic field as observed from satellites.

Tasks for the Grant Period Beginning July 1, 1994:

We will continue to study the microprocesses responsible for the transfer of energy from the

transversely heated ions to the electrons. During the present grant period we developed the code.

We plan to perform a systematic set of simulation runs and analyze them theoretically.

We will also continue to study the process of the cavity formation by the lower hybrid waves,

which has been now observed from satellites as well [Holback et al, 1993]. Using the semikinetic

modeling we plan to examine the issue of bulk versus trail heating of the ions. When the lower

hybrid waves are relatively slow they affect the entire velocity distribution function of the polar

wind ions. On the other hand, for relatively fast waves only a tail heating is likely. In the former

case a strong density depletion occurs, while in the latter case only weal depletions are possible.

A systematic theoretical study of this type comparing the results from the modeling and the

observations will greatly improve our understanding of the filamentary cavities observed in the

auroral region.
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COST ESTIMATE FOR A ONE-YEAR PERIOD

(July 1, 1994 - June 30, 1995)

Third year funding for NAGW-2903

A. SALARIES AND WAGES

1. Dr. N. Singh. Principal Investigator "

16% x 7 weeks x $1,589.74/wk.

16% x 6 weeks x $1,675.68/wk

16% x 31 weeks x $1,742.70/wk.

16% x 7 weeks x $1,742.70/wk.

2. Secretary

5% x 3/12 yr. x $18,889

5% x 9/12 yr. x $19.645

3. Undergraduate Research Assistant

10 hr. wk. @ $5.20/hr.

TOTAL SALARIES AND WAGES

B. FRINGE BENEFITS (21% A.1. & A.2.}

C. OPERATING COSTS

1. Supplies, reproduction

2. Page charges

TOTAL OPERATING COSTS

D. TRAVEL

1. See below

TOTAL DIRECT COST

E. INDIRECT

1. 42.0% MTDC

2. 42.5% MTDC

TOTAL INDIRECT

TOTAL ESTIMATED COST

/1/

/2/

13/

/4/

FY'94

7/1/94-9/30/94 FY'9B
I011194-6130195 TOTAL

1,781

1,609

236

676

4.301

761

75

0

75

5.138

2,158

0

2,158

7,295

8.644

1,952

737

1

13.308i

13,985

973

2,652

17,610

3,141

295

850

1.145

/1/ See paragraph 2.a. of financial data sheet

/2/See paragraph 2b. of financial data sheet

/3/ See paragraph 2.c. of financial data sheet

/4/ See paragraph 2.d. of financial data sheet

D.1. Travel to professional meeting to present paper/Washington, DC used for estimation purposes = $1,280

air fare = $623 (travel agent quote), per diem = $144 x 3days (GSA rate), registration = $125, misc. = $50

' UAH changes from a quarter to semester academic year beginning 8/19/94 This change affects the way

an academic appointment's time is computed. UAH's annual merit increase occurs on October 1 The four

components of Dr. Singh's salary listed above are:

7 weeks of summer 1994 (7/1/94-8/18/94) figured on the weekly rate of an P('94 ac'ademic year (39 weeks)

base of $62,000 ($62,000/39)

6 weeks of academic year 1995 (8/19/94-9130/95) figured on the weekly rate of the new semester academic

year (37 weeks) from the $62,000 base. ($62.000/37}

31 weeks of the remainder of the 1995 academic year figured on the new base of $64.480 (4% increase)
($64,480/37)

7 weeks of summer 1995 (May 15-June 30) at same weekly rate as academic year 1995

1,280

18,03B i  23,176

0 2,158

7,666_;._1 7/666
i:::::::::¢

7. 666 _iii}_ ' 9,824





FINANCIAL DATA SHEET

1. Price Summary

The cost estimate presents applicable pricing information in tile standard format adopted by the University.

2. Cost Substantiation

a. Salaries:

Proposed salaries are quoted as actuals and are increased by 4.0 percent each fiscal year to cover anticipated raises. These increases

are MERIT, not cost-of-living, raises. Percentage of time is estimated. Salaries are verifiable through the established payroll system and after-the-
fact certification of effort.

b. Fringe benefits:

Paid absences such as vacation, sick leave, and holidays are included in salaries and are charged as a direct expense as negotiated inthe indirect rate.

Fringe benefits are charged as a direct expense. They include State Teachers' Retirement, Teachers' Insurance and Annuity

Association-The College Retirement Equities Fund, social security, disability insurance, and life insurance where applicable. Graduate Research
Assistants receive tuition assistance as a fringe benefit in lieu of salary.

e. Travel:

Reimbursement of travel will be in accordance with The University of Alabama travel regulations. Expenses for out-of-state travel will

be paid on the basis of actual, reasonable, and necessary expenses. Expenses for in-state travel will be paid on a per diem basis. Transportation

costs will be reimbursed on the basis of actual costs for common carrier and at the approved rate per mile for automobiles.

d. Indirect Rate:

The University negotiates its pre-detcrmined indirect rate with the Dcparhncnt of Health and Human Services. The provisional (in
negotiation) indirect rates are as follows:

FY'94 FY'95 FY'96 FY'97 FY'94 FY'95 FY'96 FY'97

On-campus Research 42.0% 42.5% 43.0% 43.0% Off-campus Research 26.0% 26.0% 26.0% 26.0%

On-campus Instruction 62.6% Off-campus Instruc. 25.9%

On-campus Public Service 39.4% Off-campus Pub. Ser. 26.0%

These rates are based on Modified Total Direct Costs (MTDC). Indirect is not charged on capital expenditures such as equipment, alterations, and

renovations. Only the first $25,000 of each subcontract is subject to indirect rates and participant supporl costs to not incur indirect.

e. Approved Procurement System:

The UAH procurement system has bccn approved by the Dcparhncnt t)f the Navv, Oll]cc of Naval Research, thr_ugh September 30,
1994.

3. Government Agency Contacts:

Administrative Contracting Officer :

Office of Naval Research Resident Rcprescntativc
Atlanta Area Office

101 Marietta Tower

Suite 2805

Atlanta, GA 30303

ATTN: Charles K. Hayes (NASA awards)
404-730-9255

ATTN: Kathy L. Raiblc/All other awards)
407-730-9262

Audit Functions:

DHHS/OIG

Office of Audit

Fcdcral Building

P.O. Box 1704

Atlanta, GA 30301

ATTN: Michael D. Gcigcr, Audit Mgr.
404-331-2446

4. Awards:

Resulting contracts or grants should bc l'orwardcd to:

Research Administration

The University of Alabama in I Iunlsville
Research Instltute/Room E-39

IhmtsviIle, AL 35899

205-895-6000; 205-895-6677 (filx)
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CERTIFICATION REGARDING DRUG-FREE REQUIREMENTS

(Grants/Cooperative Agreements)

A. The grantee certifies that it will provide a drug-free workplace by:

1. Publishing a statement notifying employees that the unlawful manufacture, distribution, dis-

pensing, possession or use of a controlled substance is prohibited in the trrantee's workplace and specify-
ing the actions that will be taken against employees for violations of such_prohibition:

2. Establishing a drug-free awareness program to inform employees about:

(a.) The dangers of drug abuse in the workplace;

(b.) The grantee's policy of maintaining a drug-free workplace;

(c.) Any available drug counseling, rehabilitation, and employee assistance programs;
(d.) The penalties that may be imposed upon employees for drug abuse violations

occurring in the workplace.

3. Making it a requirement that each employee to be engaged in the pertbrmance of the grant be
given a copy of the statement required by paragraph 1.

4. Notifying the employee in the statement required by paragraph 1 that, as a condition of em-
ployment under the grant, the employee will:

conviction.

(a.) Abide by the terms of the statement, and

(b.) Notify the employer of any criminal drug statute conviction for a violation

occurring in the workplace no later than five days after such

5. Notifying the agency within ten day's after receiving notice under subparagraph 4(by, with re-
spect to any employee who is so convicted.

6. Taking one of the following actions, within 30 days of receiving notice under subparagraph
4(by, with respect to any employee who is so convicted:

(a.) Taking appropriate personnel action against such an employee, up to and including
termination, or

(b.) Requiring such employee to participate satisfactorily in a druo abuse or

rehabilitation program approved for such purposes by a Federal, State or local

health, law enforcement, or other appropriate agency.

7. Making a good fitith effort to continue to maintain a drug-free workplace through
implementation of paragraphs 1, 2, 3, 4, 5, and 6.

B. The grantee shall insert in the space provided below the site(s) fl)r the performance of the work done
in connection with specific grant:

Place of Performance: The University of Alabama in Huntsville, lgmtsville, Madison Co. AL

Respo,,sible University Official: _-- A- (_/( "_'-_ (7/"- _"_ff(

Sue B. Weir, Research Adtninistrator Date

Title/Identification of Applicable Research Proposal: UAIt Proposal 94-429





CERTIFICATION REGARDING DEBARMENT, SUSPENSION, AND

OTHER RESPONSIBILITY MATTERS --

PRIMARY COVERED TRANSACTIONS

(1.) The prospective primary participant certifies that, to the best of its

knowledge and belief, it and its principals:

(a.) Are not presently debarred, suspended, proposed tbr debarment, de-

clared ineligible, or voluntarily excluded from covered transactions by any Federal de-

partment or agency.

(b.) Have not within a three-year period preceding this proposal been

convicted or had a civil judgment rendered against them for commission of fraud

performing a public (Federal, State or local) transaction or contract under a public

transaction; violation, theft, forgery, bribery, falsification or destruction of records,

making false statements, or receiving stolen property.

(c.) Are not presently indicted or otherwise criminally or civilly charged

by a government entity (Federal, State, or local) with commission of any of the

offenses enumerated in paragraph (1.)(b.) of this certification; and

(d.) Have not within a three-year period

application/proposal had one or more public transactions (Federal,
terminated for cause or default.

preceding this

State, or local)

(2.) Where the prospective primary participant is unable to certify to any of the

statements in this certification, such prospective participant shall attach an explanation
to this proposal

Proposal idenlificalion:

Signature: _t_ &

94-429

j_Date: =_----"-/_--- _"

Name & Title: Sue B. Weir, Research Administralor

Institution: Tile University of Alabanla in thmtsville





CERTIFICATION REGARDING LOBBYING

CONTRACTS, GRANTS, LOANS & COOPERATIVE

AGREEMENTS

The undersigned certifies, to the best of his/her knowledge, that:

1. No Federal appropriated funds have been paid or will be paid, by or on

behalf of the undersigned, to any person for influencing or attempting to influence an

officer or employee of any agency, a Member of Congress, an officer or employee of

Congress, or an employee of a Member of Congress in connection with the awarding of

any Federal contract, the making of any Federal grant, the making of any Federal loan,

the entering into of any cooperative agreement, and the extension, continuation,

renewal, amendment, or modification on any Federal contract, grant , loan or
cooperative agreement.

2. If any funds other than Federal appropriated funds have been paid or will be

paid to any person for influencing or attempting to influence an officer or employee of

any agency, a Member of Congress, an officer or employee of Congress, or any

employee of a Member of Congress in connection with this Federal contract, grant,

loan or cooperative agreement, the undersigned shall complete and submit Standard

Form-LLL, "Disclosure Form to Report Lobbying," in accordance with its
instructions.

3. The undersigned shall require that the language of this certification be

included in the award docurnents for all subawards at all tiers (including subcontracts,

subgrants, and contracts under grants, loans, and cooperative agreements) and that all

subrecipients shall certify and disclose accordingly.

This certification is a material representation of fact upon which reliance was

placed when this transaction was made or entered into. Submission of this certification

is prerequisite for making or entering into imposed by Section 1352, title 31 US. Code

Any person who tails to file the required certification shall be subject to a civil penalty
of not less than $10,000 and not more than $100,000 for each such tailure.

The University of Alabama in Huntsville

Organization Name
UAH Proposal 94-429

Award Number

Sue B. Weir, Research Administrator

Name and Title of Authorized Person
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Pondermotive versus mirror force in creation of the

f'damentary cavities in auroral plasma

Nagendra Singh

Departmentof Electrical and Computer Engineering, The University of Alabama in Huntsville

_swact. Recently rocket observations on spikelets of lower-
hybrid waves along with strong density cavities and
traa.wersely heated ions were reported. The observed thin
filamentary cavities oriented along the magnetic field in the
auroral plasma have density depletions up to several tens of
percent. These observations have been interpreted in ten_ of
a theory for lower-hybrid wave condensation and collapse.
The modulational instability leading to the wave condensation
of the lower-hybrid waves yields only weak density

perturbations, which cannot explain the above strong density
depletions. The wave collapse theory is based on the
nonlinear pondermotive force in a homogeneous ambient
plasma and the density depletion is determined by the balance
between the wave pressure (pondermotive force) and the
plasma pressure. In the auroral plasma, the balance is

achieved in a time Xwc g 1ms. It is shown here that the
mirror force, acting on the transversely heated ions at a
relatively long time scale, is an effective mechanism for

creating the strong plasma cavities. We suggest that the
process of wave condensation, through the pondermotive
force causing generation of short wavelength waves from
relatively long wavelength waves, is a dominant process until
the former waves evolve and become effective in the

transverse heating of ions. As soon as this happens, mirror
force on ions becomes an important factor in the creation of
the density cavities, which may further trap and enhance the
waves. Results from a model of cavity formation by
transverse ion heating show that the observed depletions in
the density cavities can be produced by the heating rates
determined by the observed wave amplitudes near the lower-

hybrid frequency. It is found that the creation of a strong
density cavity takes a few minutes.

Introduction

In a recent paper, Vago et al [1992] reported interesting
results from rocket (TOPAZ IIl) observations on lower-

hybrid waves and associated heating of ions transverse to the
magnetic field lines in the auroral plasma. The rocket
observations reveal that intense lower-hybrid waves occur in
thin plasma cavities oriented along the geomagnetic field
lines. In the cavities, plasma depletions up to 80% have been

reported. As the rocket crosses the cavity, the lower-hybrid
waves appear as spikelets of 50- to 100.ms duration giving
the cavity width 50.100 m across the magnetic field lines.
Lower-hybrid wave amplitudes up to 300 mV/m have been
reported. The characteristic energy of the transversely heated

Copyright 1994 by the American Geophysical Union.

Paper number 93GL03387
0094-8534/94/93GL-03387503.00

ions is reported to be 6 eV. However, the energy
spectrograms for the reported spikelet events show
acceleration up to -30 eV [Vago et al, 1992].

Vago et al [1992] have interpreted their observations in
terms of the theory for the collapse of lower-hybrid waves
[Morales and Lee, 1975; Sotnikov et al, 1978]. According to
this theory, the nonlinear pondermotive force associated with
the wave expels plasma forming density cavities. In view of
the dispersion property of the lower-hybrid wave, the wave

numbe¢ is enhanced in the depletion region. The consequent
refraction of the waves into the cavity leads to wave trapping
and its intensification, which in turn, intensifies the process of
cavity formation. Eventually the wave collapses into a
filamentary structure like the observed spikelets. This process
can create density depletions of a few percent; the theory of
modulational instability operative in this process yields a

density perturbation 8 n / n =- (o_ / f'g m_)W / n T, where

rope, De, and e_eh are the electron plasma, cyclotron, and

lower-hybrid frequencies, respectively; W is the wave
electrostatic energy density and nT is the thermal energy
density of the plasma. For the parameters of the observations

8 n/n ~ 4 x 10-2 . Therefore there is a difficulty in explaining

the observations in terms of the wave collapse involving the
pondermotive force alone.

Recently Singh [1992] and Singh and Chart [1993] reported
that a natural consequence of transverse ion heating is the
formation of a density cavity. For spatially extended bulk

heating of ions, the density depletion can be deep and it
extends along the magnetic field lines without a significant
density enhancement on top of the cavity. On the other hand,
for a localized heating the density cavity and enhancement go
hand-in-hand. The cavity formation is caused by the plasma
expulsion by the upward mirror force acting on the
transversely heated ions. Since transversely heated ions are

an integral part of the observations, we examine here the
relative roles of the mirror and pondermotive forces in the
cavity formation.
The question arises here as to which force, the mirror or the

pondermotive force or their combined effect, is driving the
process of plasma depletion in the observed cavities. The
purpose of this letter is to compare these forces for the
parameters of the plasma during the observed wave spikelet
events ['Vago et al, 1992]. We find that in the initial stage of
the cavity formation with weaker fields of about 25 mV/m
[Vago et al, 1992], even a slight transverse ion heating causes

a mirror force exceeding the pondermotive force. Only when
the wave field intensifies to values greater than 200 mV/m,
the two forces become comparable. In view of this, we
suggest that the evolution of the density cavity and the lower-

hybrid waves occurs in two stages; in the early stage the long
wavelength lower-hybrid waves, probably generated by the

auroral electron beams [Vago et al, 1992], undergo a

257 _ PAGE BLANK NOT FK.ME_
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modulational instability [Sotinikov et al, 1978; Shapiro et al,
1993] generating waves with shorter and shorter wavelengths
until they become effective in transverse heating of ions. For

strong waves, such a heating is expected to occur when the
difference between the perpendicular wave phase velocity and

the wave trapping width becomes comparable to the velocity
spread of the thermal ions. As soon as the heating begins to
enhance the perpendicular temperature of the ions, the mirror
force becomes an important cause for the plasma depletion in

the density cavities; the depletions in the cavity can be up to
several tens of percent, which cannot be achieved by the
pondermotive force alone. Calculations show that the
observed amplitude levels of the lower-hybrid waves produce
sufficiently strong heating to create density cavities with

depletions as observed.

Comparison of Pondermotive and 1Vfirror Forces

The effects of pondermotive force on the nonlinear
evolution of lower-hybrid waves have been studied by

including different types of nonlinearities. In the early work
of Morales and Lee [1975] the nonlinearity considered arose
from the motions of charged particles along the fields of the
wave. In later studies [Somikov et al, 1978; Shapiro et at,

1993] it was shown that a much stronger nonlinearity arises
due to the E x B drift of the electrons, where E is the wave
electric field and B is the ambient magnetic field. This latter

nonlinearity gives rise to a stronger pondermotive force than
that given in the early Work of Morales and Lee [1975]. The
magnitude of the pondermotive force given by Shapiro et al
[1993] is

re,,=-½ 0 IE.I (I)
no f_oth Oz' _"

where FelI is the pondermotive force acting on electrons,

oix and f'_ are the electron plasma and cyclotron

frequencies, respectively, so is the permittivity of free space,

no is the ambient plasma density, and EL is the wave
electric field component perpendicular to the ambient

magnetic field.
In order to assess the relative importance of the above

pondermotive force and the mirror force acting on
transversely heated ions, we compare these two forces. The
latter force is given by

OB (2)Fm = _(_l__,)l O-"z

where .TLL and "I_11are, respectively, the perpendicular and

parallel ion temperatures in energy units, and B(z) is the
geomagnetic field. Along the auroral flux tubes,

B(z) = Bo(Re/z) 3, where Bo is the magnetic field when the

geocentric distance z = Re, the Earth's radius. Using this

information, (2) can be written as

Fm = 3(Tx -'Ill) / z (3)

It is worthwhile to point out that for an isotropic ion

temperature (TI.L= Till), mirror force Fm = O. When

.Ttx> Ti, , there is a upward force on the ions.

The plasma conditions for the reported spikelet events are as
follows [Vago et at, 1992]: plasma density n--101°m -3,

electron and ion temperatures ~ 5000 ° k, electron cyclotron

frequency f_=106Hz and the plasma frequency

fix - 106Hz" The plasma predominantly consists of O+ ions
at an altitude of about 103 km. In such a plasma, the lower-

hybrid frequency is given by ot h =opi(l+_02/_e)-1/2 _

0.7opi, where opi is the ion-plasma frequency.

For evaluating the pondermodve force FetI, we need to

estimate the parallel scale length in the variation of [Ej-(z)_.

We assume that it is determined by the intimate relationship

between the parallel ([41) and the perpendicular (L J-) scale

lengths of the lower-hybrid waves, namely,

I41= (m i tree) v2 LJ- (4)

I4i is the width of the observed filamentary cavity; for the

purpose of calculations we assume Lj.=-100m and find

I4i ---17 km. If the lower-hybrid wave is excited by an auroral
electron beam with energy of a few hundred eV, the above

values of LJ- and 1.41are about ten times the perpendicular

and parallel wavelengths of the wave, respectively. The
differential O/0z appearing in (1) can be approximated by

a[Ej-_/0z =]EJ,[2 /1-41, which yields

FeiI= 6.3 x10 -24 ]E±I2N (5)

Taking the nominal value of the electric field

IEj.[ = 25 mV/m for the time just before the cavity forms

[Vago et at, 1992], we find F©ll-:4xl0-2"IN. This force is

transmitted to ions by an anbipolar electric field if the
pondermotive force is the only force acting on the plasma.

At an altitude of 103km, the mirror force from (3) is

Fm =6.5x 10-26AT, where AT = Tt.L- Till, and it is expressed

in eV. Comparing Felt with Fm, we find that the latter

becomes more effective than the former as soon as ions are

transversely heated giving

AT>0.16 eV (6)

that is, even for a slight perpendicular heating the parallel
mirror force begins to dominate the parallel pondermotive
force on ions.

It is important to point out that as the pondermotive and the
mirror forces act to create the plasma cavity, the electric field
is enhanced by wave trapping and the transverse ion

temperature is enhanced by the ion heating. Thus the
pondermodve and the mirror forces evolve simultaneously.
The exact nature of the evolution and their relative

importance have not been studied so far. However, we find
that even in the late stage of the evolution the mirror force is
an important factor. For example, if we assume that in the
late stage when the deep cavities have formed,

Ej,--200mV/m and AT=6eV, Fe,=2.5xl0-2SN and

Fm = 4 x 10-25N.
A major difficulty with the wave collapse theory, based on

the nonlinear pondermotive force, is in explaining the
observed levels of plasma depletions in the density cavities.

This theory predicts that the quasineutral density perturbation
in the plasma is given by [Shapiro et al, 1993]

o 2
= -_ s_IE2, I/4(Te+Ti) (7)

8n/no-D.,oth -, .,.,

Assuming [E J,]= 300 mY/m, the maximum value of the
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electric fields reported by Vago et al [1992], Tc = "1_= 0.5 eV

and no=101°m-3, we find 8n/no=4×10 -2, which is at

least an order of magnitude smaller than the strong plasma
depletions in the observed cavities. The main reason for the

weak plasma depletion is that the density perturbations are
determined by the balance between the wave pressure
(pondermotive force) and the plasma pressure in a

homogeneous ambient plasma. The theory of Shapiro et al
[1993] shows that the balance is achieved at a time scale

x_ = 0.1_ _iI, which is less than a millisecond in the auroral

plasma. The subscript "we" on r refers to the time scale of

wave collapse in a homogeneous ambient plasma. However,
if the wave collapse has created strong waves effective in

heating ions, the continued heating of ions over a relatively
long time can create strong cavities. We demonstrate this by
a model calculation.

Modeling of Cavity Formation

In order to demonstrate the effectiveness of the mirror force

in creating the cavity with the observed levels of wave

amplitude, we adopt a model based on hydrodynamic

transport equations for the O + ions in the polar wind [Singh,
1992]. Electrons are assumed to obey the Boltzmann law
with a temperature of 0.5 eV. The cavity formation and the

wave must evolve simultaneously. In this paper we cannot
study this simultaneous evolution. However, we can develop

a feel for the depth and time constants of the plasma cavity
formation by considering plasma depletions by the mirror
force for the representative values of the observed wave
amplitudes. From Vago et al [1992], we estimate that the

power spectral density u/< 10"_ V 2 m-2 Hz -1. Thus, the

heating rate is limited to 0TL/0t<0.14 eV/s [Singh and

Schunk, 1984]. We calculate the response of the plasma to
such a heating in an auroral flux tube by considering different
transverse heating rates. We consider a portion of a flux tube

from an altitude of 1000 to 2800 kin. First a polar wind type
of flow consisting of O+ ions is established in it, with
boundary conditions at 1000 km altitude as follows: density
no = 104 cm-3, equal electron and ion temperatures

To = 0.5 eV, and flow velocity Vo = Vti , the ion thermal

velocity. At the top end of the flux tube we assume the flow
is continuous. The perpendicular ion heating is switched on
at t = 0 for altitudes h > 1200 kin. Figures la and Ib show

the temporal evolution of the density and perpendicular

temperature, respectively, in the flux tube for a relatively low
heating rate of 0.014 eV / s. The temporal evolution up to 3
minutes are shown: At t = 1 min., the cavity is quite weak.

By the time t = 3 rain., the cavity has grown to about
6n/n o ___-10% and it extends to an altitude of 2200 kin. The

corresponding evolution of Ti± shows a typical feature of

extended heating [Singh, 1992]; the temperature increases
with the altitude inside the cavity and then it saturates, with
saturation value increasing with time. The maximum
temperature inside the cavity at t =3 rain. is about

"I__L= 7To = 3.5 eV.

Figures 2a and 2b show the evolution of n(r) and T±(r)

for a stronger heating rate of 0.14 eV corresponding to

_' = 104 V 2 m-2 H_ 1. These figures show temporal and

spatial evolution of ni and Ti± as in Figures la and lb,

i_ (a) t-O [
r\ TI. t=l==. 1

I1i |'x_ .. t==2mim |

.25 1 _"_
1 1.6 2.2 2.8 i 1.6 2.2 2.8

ALTITUDE (1000 kay)

Fig. 1. (a) Evolution of density depletion in response to
transverse ion heating above an altitude of 1200 km with a

heating rate of 0.014 eV corresponding to a lower-hybrid

wave level _/= 10-9 v_ m-2Hz -I. Co) Evolution of Tx.

Note that for the low heating rate, the relative plasma
depletion 8n/n < 10%.

respectively. The density depletions are generally much
stronger in Figure 2a than that in Figure l& For example at
t = 2 min., the maximum depletion is 28% at h -- 1600 km

where _±=36T o_=lSeV. At t=3min., at the same

altitude, the density depletion is 36% with nearly the same
value of T±.

The heating rates considered above are within the range
given by the observed power spectral density. Therefore it
appears that within a few minutes after the onset of the
relatively strong lower-hybrid waves, the observed levels of

plasma depletions can he achieved. The results shown in

Figures 1 and 2 indicate that in order to create density cavities
with depletions of several tens of percent, the power spectral
density near the lower-hybrid waves must exceed

10-9 V2m-2Hz -i, and the heating must last over a few

minutes. It is worth pointing out that at time scales t > ¢_,

the pondermotive force may continue to participate in the
density depletion process because of the inhomogeneous
nature of the auroral plasma. This is especially true when the
wave amplitudes are sufficiently strong to yield comparable
pondermotive and mirror forces.

Finally we discuss the parallel and perpendicular sizes of the

density cavity. The axial size of the cavity depends on the
field-aligned extent of the heating region and the duration of
the heating. However, for a localized heating, the plasma
expulsion produces density enhancement on top of the cavity
[Singh, 1992; Singh and Chart, 1993]. On the other hand,
extended heating produces a continual expulsion of the
plasma into the steadily decreasing density of the polar wind

with increasing altitude, without producing hardly any density

- _ 64

-,:o=t l, ..---t=2,=.l .-;"

Oi _ i|

1 1.6 2.2 2.8 1 1.6 2.2 2.8

ALTITUDE (1000 km)

Fig.2. (a) Same asFiguresla,but fora heatingrateof 0.14

eV. Co) Same as Figure ib with the above heating rate. Note
that the relative depletion in Figure 2a is much stronger than
that in Figure la.



26O Singh: Pondermotive vs. Mirror Force

enhancement as seen from Figures Ia and 2a for t = 1 and 2

minutes. Since the rocket observations do not seem to report
the existence of density enhancements, it appears that the

heating occurs over an extended region along the auroral field
lines. The size of the cavity along the field lines depends on

the beating time, as seen from Figures Ia and 2a. In view of
the observed level of waves and depletions in the density

cavity, the heating must be lasting at least over a few minutes,
and extending over hundreds or even thousands of kilometers.

The filamentary nature of the plasma cavities having

width _ 100 m probably follows from the extremely small

half-cone angle (0c) of the group-velocity resonance cone of

the lower-hybrid waves [Morales and Lee, 1975]. Near the

lower-hybrid frequency, 0c---(me/mi)l/2~5 xl0-3rad-,

which is complementary to the phase-velocity resonance cone
angle. Since the electrostatic energy of the lower-hybrid
wave is confined within a cone with its axis along the

geomagnetic field and half cone angle 0 < 0c, the observed

cavity width (w) of _ 100 m reveals that the electrostatic

lower-hybrid waves are excited by the auroral electron beams
and absorbed by the plasma through the transverse heating of
ions within a distance < w / 0_ -- 20 ian. The temporal and

spatial features of the excitation of such waves by auroral
electron beams and absorption by the thermal plasma are a

challenging problem and remain to he studied.

Conclusion and Discussion

The main conclusions of this paper are as follows: (I) A

comparison of the pondermotive and mirror forces show that
the latter force on the transversely heated ions is an important

factor in creating the strong plasma depletions in density
cavities as observed during the lower-hybrid wave spikelet

events [Vago et al, 1992]. (2) The mirror force becomes a
significant force from the very early stage when ions are even

slightly heated causing T± to exceed _l by a fraction of an

eV. (3) A model of the polar wind type of flow including
transverse ion heating [Singh, 1992] shows that the heating

rates given by the observed levels of lower-hybrid waves can
produce density depletions consistent with the measured
densities in the filamentary density cavities. The
measurements indicate density depletions of a few tens of

percent to be a common occurrence, but some events
indicated depletions up to 80%, which were reported to occur
with strong lower-hybrid waves. Model shows that for the
strong depletions up to several tens of percent, the power

spectral density must exceed 10-SV2m-2Hz -1. (4) The
model shows that for the observed wave levels and the

depletions in the cavities, the heating events should last over a
few minutes which is much longer than the time scale for the
wave collapse in a homogeneous plasma. For such heating,

the cavity extends to several hundred kilometers along the

geomagnetic field lines.
The effectiveness of the mirror 'force in density depletions is

contingent upon the transverse heating of ions. The lower-

hybrid waves, generated by auroral electron beams having
energies of several hundred eV, are generally too fast to
affect wave-particle interactions with the ions. For such an
interaction the perpendicular phase velocity of the wave

should he comparable to the thermal speed of the ions. In
order to achieve this, the long wavelength fast waves undergo
wave condensation and collapse through a modulation

instability, generating short wavelength slow waves [Sotnikov
et al, 1978; Shapiro et al, 1993]. During this stage, the

nonlinear pondermotive force drives the modulational
instability and creates plasma perturbations, which are weak
and not as strong as the observed density depletions. The

theory of Shapiro et al [1993] indicates that this occurs at a

time scale of _we _ 0. Im_1 _ 0.4 ms for a wave amplitude of

25 mV/m. As soon as the short wavelength waves become
effective in transverse heating of the ions, mirror force

becomes a significant mechanism by which density depletions
are created. The density perturbations created by the mirror

force may further facilitate the wave trapping and
enhancement.
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Numerical Simulation Of Plasma Processes Driven by Transverse Ion Heating

NAGENDRA SINGH AND C. B. CHAN
b

Departmenf o/Electrical and Computer Engineering , University o/Alabama, Huntsville

Numerical simulation is performed to study the plasma processes driven by transverse ion
heating in a diverging flux tube. It is found that the heating drives a host of plasma processes, in
addition to the well-known phenomenon of ion conies. The additional processes include formation
of a density cavity topped by a density enhancement, formation of a reverse and forward shock
pair with a "double-sawtooth" structure in the flow velocity. The downward electric field near the

reverse shock generates a doublestreamJng situation ¢onslsting of two upfiowing ion popttlatlons
with different average flow velocities. A double streaming also occur-, above the forward shock,
where the ions energized by the heating are overtaking the relatively slow ions in the ambient polar
wind. The energized ions appear as "elevated" ion conics with a low-energy cutoff depending on
the distance from the heating region. The parallel electric fields generated by the transverse
ion heating have the following noteworthy features; the electric field near the forward shock is
essentially unipolar, and it points upward, and for the heating localized in both space and time,
the field has the features of a weak double layer. The electric field in the reverse shock region is
modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in
this region have the possibility of heating electrons. The results from the simulations are compared
with results from a previous study based on s hydrodynamic model. Effects of spatial resolutions
afforded by simulations on the evolution of the plasma are discussed, demonstrating how a crude
resolution can miss out plasma instabilities, affecting the plasma flow.

1. INTRODUCTION

Transversely heated ions are a common feature of the

Earth's magnetosphere. Since the early observations of such

ions during the late seventies [e.g., Whalen et al., 1978;

Klumpar, 1979], a great deal of work has gone into un-

derstanding the generation and transport of such ions [e.g.,

Chang, 1986; Klumpar, 1986]. However, most treatments on

the transport employ the test particle approach, in which a

perpendicularly heated ion is transported under the action of

the upward mirror force proportional to the gradients in the

magnetic field. Only recently, time-dependent models have

been employed to study the generation and transport pro-

cesses and their effects on the ambient plasma [Ganguli and

Palmadesso, 1987; Brown et al., 1991; Singh, 1992]. The

aspect of the plasma perturbations created by the trans-

verse ion heating was emphasized by Singh [1992]. Among

the noteworthy features of the plasma perturbations are the

formation of density depletion and enhancement, and gen-

eration of parallel electric fields. For impulsive heating, an

interesting feature of the parallel field is that it occurs in

the form of a nearly unipolar upward pointing electric field

pulse, which mows upward with a velocity of several tens of

kilometers per second. However, a large-scale model dealing

with distances of thousands of kilometers is limited in its

temporal and spatial resolutions. On the other hand, elec-

tric fields seen in the auroral plasma [Temerin et al., 1982]

have spatial size of a few meters and corresponding time

scale of about a few milliseconds. Therefore, in the previ-

ous work of Singh [1992], it was not clear at all how such

an electric field pulse can be compared with weak double

layers.

The purpose of this paper is to study the perturbations

Copyright 1993 hy the Auterieau Geophy._ical Union.

Paper number 92JA02789.

t_ 148-0227/93/92 J A-O 2789505.00

created by the transverse ion heating, using a small-scale

particle-in-cell code having the capability of resolving dis-
tances of a few Debye lengths and time of a few millisec-

onds. The particle simulation reveals the same basic feature

of the plasma perturbations generated by the transverse ion

heating as seen from the large-scale hydrodynamic study,

namely, the formation of a density cavity topped by a den-

sity enhancement, and eventually, the evolution of the den-

sity perturbation into a reverse-forward shocks pair. The
unipolar upward pointing electric field occurs near the for-

ward shock. The maximum electric field in the pulse is a few

mlUivolts per meter, and its spatial dimension is a few tens

of meters. These features of the pulse, including its upward

velocity of about 50 kin/s, have striking resemblance with

the weak double layer seen from satellite [T_mer_rt et al.,

1982; BostrJm et al., 1988].

Kinetic simulations show additional noteworthy features

involving multistreaming of ions. Above the perturbations

in the density, ions with relatively large energies stream up-

ward, setting up an ion conic type of flow on top of the am-

bient polar wind. In the midst of the density depletion and

the enhancement, two streams of up flowing ions appear,

which eventually couple together through ion-ion instabil-

ity. It is interesting to point out that if the grid size in the

simulation is increased beyond a certain limit, the ion-ion

instabilities are not seen. This implies an important limita-

tion of large-scale models, in which the usage of large grid

size eliminates the possibility of coupling the ion streams.

Futhermore, the large grid size and the corresponding large

time steps eliminate the process of steepening of a compres-

sive density perturbation forming a shock, like the forward

shock near the density enhancement.

The fast ions above the forward shock appear like "ele-

vated" ion conics with a low cutoff energy, which increases

with increasing distance from the heating region. F,ather-

more, the density of such conics decreases monotonically

with the distance. This suggests that ion conics can be

found far from the regions of strong density perturbations

in the plasma, created by the heating process.
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The rest of the paper is organised as follows. The simu-

lation technique is described in section 2. Numerical results

on the plasma perturbations are described in section 3. The

paper is concluded in section 4.

2. SIMULATION MODEL

We use a particle-in-cell code to solve for the dynam-

ics of ions flowing along a diverging flux tube (Figure I).

The electrons are assumed to obey the Boltzmann distribu-

tion, which in conjunction with the quasineutrality condi-

tion yields the electric field parallel to the magnetic field.
As mentioned in the introduction, the flux tube simulated

is artificial in the sense that magnetic field is reduced by a

factor of 2 over a distance of about s,,,,, = 7.5 km. This is

done to hasten the transport of the transversely heated ions

by the mirror force. The ion heating occurs over a limited

region of space (Figure 1). Ions in this region are given a

random impulse 6w± in the perpendicular direction accord-

ing to a Maxwellian probability density function given by

[Brown et al., 1991; Puri, 1966]

1 _,,._/_u. (1)
p(_w_) = _--_e

The energy of the ions is given by

w_t = '_±, + _,o_ + _VG-_6,olco,¢ (2)

where w±, and wx! are the perpendicular energles of the

ions at the beginning and end of a time step, and _ is an

angle between 0 and 27r randomly chosen from a uniform
probability density function. The heating rate is related to
o according to o = 1.14At(gw.L/01), where w± = 1/2mV± 2,

m is the ion mass and V± is the perpendicular velocity.
The ion motion is advanced by solving the equation of

motion

d: s OB

"*T_ = q_" - _'T; (3)

where m and q are the mass and charge of an ion, Eli is

the electric field, /z is the magnetic moment of the ion, and

OB/gs is the gradient in the magnetic field.

The parallel electric field, Ell, is calculated by assuming

that the plasma remains quasineutrai, i.e., n_ _ ai, where

n, and nl are the electron and ion densities, respectively.
Futhermore, electrons are assumed to be a massless isother-

mal fluid. The electron momentum equation gives

TRANSVERSE

HEATING REGION

S TUBE

t
DENSITY N O

TEMPERATURE T O

Fig. 1. Geometry of the simulated flux tube. No(20 crn -_)
and T0(0.3 eV) axe the boundary values of plasma density and

ion temperature.

E!-'- kT_ I On, I7 ,,, 8, (4) .

where k is the Boltsmann constant and Te is the electron

temperature.
As we will see later, the scale lengths in the plasma per-

turbations studied here are several tens of meters while the

plasma Debye length is a few meters. Therefore the space
charge effects are ignorable and quasineutrality is a good

approximation. The assumption of electrons being massleu
eliminates the effects of velocity gradients in the flow. Since

in the present calculations we assume that there is no field-

aligned current and n_ _ n_, it is implied that V_ = V_,

where Ve and Vi stand for electron and ion flow velocities,

respectively. In the calculations presented here, we assume

T_ = 1 eV, for which electron thermal velocity, _e _- 400

km/s. In the perturbations discussed in this paper, the fiow
velocities Ire and IF/ < 15 V,i, where V. is the ion thermal

velocity, which is about 5.5 km/s. Therefore we find that

V_ __ Vi_ << V,_. This ensures that the assumption of elec-

trons being massless is justified. Futhermore, it also justifies

the assumption of electrons being isothermal.

3. NUMERICAL RESULTS

3.1. Summarl/ of ReJults From the Fluid Model

The origin of this paper lles in a previous paper [Singh,

1992], in which plasma perturbations created by transverse
ion heating were studied, using a large-scale model based on

fluid equations for the plasma. Since our goal in this paper

is to examine how the results from a kinetic treatment of

ions compare and contrast with the results from the fluid
treatment, it is useful to briefly review the latter results.

Figures 2a to 2h show the basic nature of the perturbations

in density, flow velocity, paral.lel temperature, perpendicular

temperature, and the parallel electric field when the heat-

ing occurs over 5s over a heating region of 210-km length at

an altitude of 5500 ks. The heating rate is 240 eV/s and

electron temperature is assumed to be 10 eV. Figures 2a to

2h show the evolution of the perturbation up to t = G =

2 min. Note that t,, = n x 30 s. We find that at an early

time (t <_ h) the basic feature of the perturbation is the
formation of a plasma cavity topped by a density enhance-

ment (Figure 2a). At later times, the density perturbation
evolves into a reverse-forward shock pair, as indicated by

"R" and "F'. The leading edge of the perturbation is the

forward shock (F) and the trailing edge of the density en-
hancement is the reverse shock (R). The entire perturbation

is seen moving upward. However, the trailing edge of the

perturbation moves much slower than the leading edge (F),

resulting in the creation of an extended cavity which ex-

pands upward. Figure 2b shows that the flow velocity is

perturbed over the entire region of the density perturbation
and it has the feature of a double sawtooth; the tooth near
the forward shock is sharp, while near the reverse shock it is

relatively shallow. When the heating continues for a longer

time, the reverse shock also evolves into sharp jumps [5ingh,

1992].
The temperature profile for Tll shows a cooling in the

plasma cavity and an increase in the density enhancement
between the reverse and forward shocks. The transverse

heating yields a maximum perpendicular temperature of I00

eV at t = tl and the maximum temperature adiabatically

decreases later on. The enhancement in T± is limited to

altitudes below the forward shock. Later we show how this
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Fig. 2. Plasma perturbations in response to an impulsive heating both in time and space (Ath = 5 s, Ash =
60 kin). Electron temperature Te ----10 eV. (a) to (d) The evolutions of n(s), v(s), TII()) and T±(.), respectively.
(e) to (h) The evolution of the electric fields distribution.

feature is appreciably modified when the ions are treated

kinetically.

The electric field perturbations for the transverse heating

are shown in Figures 2e to 2h. The most noteworthy feature

of the electric field distribution shown in this figure is its

evolution to predominantly unipolar upward pointing elec-

tric field near the leading edge of the density bump when

t > t= _ 1 rain. This dominant electric field pulse prop-

agates upward with a velocity of about 60 kin/s, which is

about twice the H* ion acoustic speed with 10-eV electrons.

Such upward propagating electric field pulses appear quite

similar to the predominantly unipolar electric fields observed

in the auroral plasma [Temerin et al., 1982]. However, the

observed fields are generally interpreted as ion acoustic dou-

ble layers which have scale length of a few tens of Debye

lengths ('-- 100 m). In contrast, in the hydrodynamic calcu-

lations we have a spatial resolution of 60 km and temporal

resolution of ls, which are, respectively, the intergrid spacing

and the time step used in our calculations. In the follow-

ing discussion, we present results from a kinetic treatment

of ions with spatial and temporal resolutions capable of re-

solving ion dynamics at a time scale of ion-plasma period.

3.2. Results From a Small.Scale Kinetic Model

We first ran the simulation without any heating until a

polar wind type of flow is set up in the artificial flux tube.

For the parameters chosen here, this takes about 1200 _pio,-t

where ¢oI,,o is the ion plasma frequency at s = 0, where nor-

malized density is unity. When the flow is established, the

heating is switched on over the spatial region 50 < s/X,u <_

250. The heating rate OW±/Ot is about w_,,okTo, where k is

the Boltzmann constant and To is the ion temperature at the

boundary s = O. The flux tube length is S .... = 7500_ai.

For the parameters chosen here the plasma density at the

bottom of the flux tube is 20 cm -_ and temperature To -

0.3 eV, giving ion Debye length X.u _ 1 m, S .... = 7.5 km

and heating rate (aW.L/Ot) is 1800 eV/s. The heating is

kept on over a time period of Ata = 40¢#_,1o _ 5 ms.
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3.3. Perturbation in Pha,e Space I flux tube, but there are still perturbations perslsting in V| ._
The evolution of the heated ions is shown in Figures 3a extending to much lower heights. _.

and 3b which give the temporal evolution of phase-space in

S - _1 and S - _ planes, respectively. At i -- 1400, where

[ = t_j,,o, heated ions are still relatively localised near the

heating region. At later times they flow upward under the

action of the mirror force leading to an increase in parallel

velocity(energy) at the expense of the perpendicular veloc-

ity (energy). As the ions flow upward, the phase-space plots

show that double streaming develops both near the top and

bottom of the perturbation. The two streams at the top

consist of transversely heated ions, which have gained con-

siderable parallel energies under the action of the mirror

force, and the ambient polar wind ions. The relative paral-

lel velocity between these two ion populations is sufficiently

high and therefore they do not show any sign of ion-ion in-
teraction causing instability [GreJillon and Doveil, 1975].

In the bottom most part of the perturbation ions appear

to be primarily accelerated in their parallel velocities, but
above a certain height depending on time, another stream

appears. The latter stream is relatively slower. In the re-

gions where these streams overlap, there are vortices in the

S - VII plots. These vortices are the consequence of ion-ion
instability, which we shall discuss later on. By the time t

2200, the major part of the perturbation in terms of trans-

versely heated ions h_ almost exited from the top of the

I L I

0 _ , .J

10: --

_ " , --

...... , .... : "@ :" L=2200!

0

0 1875 3750 5625 7500

Distance S/Aii

Fig 3a. Phase-space plotsin S - VII plane.

The distribution function of the ions in the perturbation

region (3750 < S/A,. 7500) is shown for _ = 1800 in Fig-

ure 4a, which gives the scatter plots of ions in gj. -V I
plane. Transverse acceleration of ions and associated par-
allel acceleration due to the mirror force is clearly seen.

However, we also find some ions gaining only a parallel en-

ergy corresponding to the increase in parallel velocity up to

VII _ 15Vti. This paraJlel acceleration is the consequence of
the random nature of the ion heating; ions gain perpendic-

ular energies at some stage of the heating and then lose a

part of it at a later stage, after they have moved upward,

and converted a part of the earlier gained energy into their

L)
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g,

C.,

301 • :.

/j,:
20 . _..

• -2-_ .7
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t=1400
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Fig. 3b. Phase-space plots in 5' - V± plane.
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Fig. 4. Distribution of heated ions in V_ - VIIplane for (a) en-
tire perturbation (3700 < s/$k,_i > 7500) and (b) above the forking
point (_ > 6000_ai) at _'-----1800_"

parallel velocity component. However, the important fea-

ture of the random heating is the production of ion conics

elevated in parallel energy. The elevation in parallel energy

is more clearly seen if only the ions above the strong per-

turbation in the density, where double streaming occurs, are

examined. This is shown in Figure 4b for ions with $ > 6000

)_a at _-- 1800.

3.4. Perturbation in Average Flo_ Properties

We now compare the basic features of the plasma per-

turbations produced by the heating in the hydrodynamic

(Figures 2a to 2h) and kinetic models. For the latter model,

the evolution of the perturbations in the bulk plasma pa-

rameters such as density, flow velocity, and effective parallel

and perpendicular temperatures are shown in Figures 5a to

5d. It is important to point out that the comparison is not

quantitative, only the basic features of the perturbations are

compared here. As expected the localized heating creates a

density cavity topped by a density enhancement• The en-

tire perturbation rides on top of an upward expanding polar

wind into a plasma cavity created by the heating. Unlike in

the hydrodynamic model (see Figure 2a), the leading portion

of the density enhancement has a perturbation extending to

relatively large distances. The extended perturbation is the

consequence of the fast ions running ahead of the major per-

turbation in the density (see Figure 3). However, like in the

hydrodynamic model [Singh, 1992], there is a sharp gradi-

ent near the leading edge of the density enhancement and

it occurs where the S - _il phase-space plot forks into two

distinct branches consisting of the ambient polar wind and

the transversely accelerated ions as indicated by downward

arrows in Figure 3a. Below the fork, the hydrodynamic pre-

dictions are expected to be true and above it, double streams

occur with large relative velocities, and the hydrodynamic

model fails. The sharp gradient in the density profile is the

forward shock found from a hydrodynamic model [Smgh,

1992]. The shock separates the fast streaming ions above it

from the mixed, and relatively warm just below it.

The velocity profiles in Figure 5b show that at [ = 1400,

the perturbation is beginning to develop a double-sawtooth
structure and it is fully developed at i = 1600. The lower

sawtooth in the perturbation occurs near the trailing edge

of the density enhancements, where downward electric fields

occur and retard the upward flow of transversely heated ions•

This retardation of ions produces the doublestream (Figure

3a) feature in the reverse shock region. The hydrodynamic

model fails to handle such a double-streaming. The top saw-

tooth occurs near the leading edge of the density enhance-

ments, the forward shock. However, due to the fast ions

running ahead of the forward shock, the slope of the lead-

ing tooth is considerably reduced. For later times shown in

Figure 5b, the upper sawtooth has exited from the top and

only the lower sawtooth can be seen.

It is worth noting that above the forking point in S - VII

space (Figure 3a), where double streams occur, the average

flow velocity does not give the true velocity of the trans-

versely heated ions because the relatively dense cold stream

(polar wind) weighs down the flow velocity. As mentioned

earlier, this region is not treated properly by a hydrody-

namic model.

In Figure 5e, we show the evolution of the effective parallel

temperature calculated from the equation
N

T..tt(IAS) = _-_rn,(V_ - V)2/N (5)

1=1

where N is the number of particles in a cell of length As =

75_ai, and IAa is the distance from s = 0 with I as an integer.

The parallel temperature profiles show a cooling of ions in

the lowest part of the perturbation. Cooling occurs as the

polar wind expands into the plasma cavity created by the
transverse ion heating. Such a cooling is also predicted by

the hydrodynamic model (Figure 2c}. However, the effective

temperature is seen to be elevated considerably beyond the

forking point in the phase-space plots in S- _il plane (Figure

3o). This is simply because above the fork]ng point there

are double streams and the concept of a single temperatute

for the entire ion population is not valid.

The evolution of the effective perpendicular temperature

is shown in Figure 5d. In this case also, it is worth mention-

ing that above the forking point in $ - _1 phase-space, there
are two streams and the effective temperature does not give

the true picture of the heated ions because the relatively

dense cold ion stream (polar wind} weighs down the tem-

perature significantly. It is important to point out that the

heated ions above the the forking point in the S - I/il plots

(Figure 3a) are completely lost in a hydrodynamic model,

and these are the ions which appear as ion conics (Figure

4a and 4b). There are heated ions even below the forking

point, but they represent an ion population having under-

gone a bulk heating, as a consequence of the merger of the

polar wind and transversely heated ions. The hydrodynamic

model can properly handle this portion of the perturbation.
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3.5. Parallel Electric Field Generation

Figure 6 shows the evolution of the parai]el electric field

generated by the transverse ion heating. The plot at _ =

1200 shows essentiallythe noise in the simulation system just

before the heating. At _ -- 1400, we notice the development

of"a tripletin the electricfieldperturbation, consisting of

upward (positive)fieldsin itsbottom most part,downward

(negative)fieldsin the middle, and a relativelylocalizedsoll-

tary pulse with upward fieldsnear itstop. As the composite

perturbation evolves, the solitaryelectricfieldpulse moves

upward with a nearly constant speed; the propagation of

the pulse is indicated by the slant line giving the trajec-

tory of the peak of the pulse in J-t plane. The trajectory
is obtained by projecting the peak point on the horisontal

axis and joining the projection points in the panels for i =

1600, 1800 and 2000 in Figure 6. The slope of this line gives

the propagation speed to be about 8.iV., which is about

46 km/s for the parameters chosen for the run. The pulse

width of the electric field is about 200 m. The maximum

field strength is about 6 x lO-aE0 _ 2 inV. However, it

is worth mentioning that the field strength depends on the

electron temperature as given by equation (4). For higher
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electron temperatures, a higher field strength is expected.
For example, if T_ was chosen to be 10 eV, fields up to 20

mV/m are expected, and for T_ = 100 eV, the fields scale to

be as high as 200 mV/m. Even the shock processes may en-

hance T_ and hence the electric field. [Foralund and Shonk,

1970]. The electron temperature enhancement occurs when

the electrons are trapped in the potential well created by the
density enhancement. However, in the present calculations

we have assumed electrons to remain isothermal and hence

such effects are not included.

Figure 6 shows that, in the wake region of the solitary

electric field pulse, oscillating fields develop. Such fields are

clearly seen for t __. 1600 and they are well developed at

>_ 2000. The amplitude of the wave is seen to increase to
8 x IO-3Eo _ 2.5 mV/m. The oscillating fields are usoci-

ated with vortices in S - VII phase space (Figure 3a). The

vortices can be barely teen from Figure 3. Therefore, we
have replotted them on an expanded scale in Figure 7 for

= 2200; the vortex sise ranges between 100 to 250 X_;, which

corresponds to the range in the wavelength of the spatial os-

cillations in the parallel fields. The vortices occur over 3750

< s/X,ll < 5625, which is the spatial region in which the

oscillating fields occur at this time (see Figure 6e).

The ion-ion instability occurs when the relative velocity
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(V, et) between the streams is limited to V, el < 2C, [e.g.,

Gresillon and Doveil, 1975; Singh, 1978], where C, is the

ion-acousticspeed. In our calculation,T_ = 3.3T0,for which

(7, __ 2V,, where Vtl is the ion thermal velocitygiven by

(kTo/rn) I/2. Thus the coupling is expected to occur when

V,_l _< 4Vii. The space-phase plots (Figure 3a) show that

forthe double streaming in the reverseshock region,thisve-

locitycondition iswell satisfied.On the other hand, for the

double streaming above the forward shock, the two streams

are generally too fastto drive the ion-ion interaction.How-

ever,for such faststreams ion-electroninteractionmay lead

to instabilities,which occur when the negative energy (slow)

mode of an ion beam is damped by the Landau damping

caused by the thermal electron population [$ingh, 1978].In

the present model, electronsare assumed to obey the Bolts-

mann Law, so thiskineticinstabilityissuppressed from the

model.

3.6. Numerics Versus Physics

Plasma problems in space involve a wide varietyof scale

lengths, ranging from plasma Debye length to the geophys-
ical distances. This makes it impossible to develop self-

consistent models including both small- and large-scale pro-

ceases. Recently, large-scale semikinetic models have been

developed to study the polar wind [Wilson et al. 1990;

Brown et al., 1991; Ho et al., 1992] and the plasmaspheric

refilling ILia et al., 1992; Wilson et al., 1992]. These mod-

els employ a particle code in which the number of particles

is limited to about 105, filling a flux tube of length up to

several earth radii. Thus the models have, on the average,

about 1 particle per kilometer. In these models, electric
fields are calculated from the ion density, which is obtained

by the number of particles in numerical ceils and their vol-
umes. In order to have reasonable statistics, the cell size is

typically several tens of kilometers. Due to these reasons,

the large-scale kinetic models suppress the microprocesses,

even though the codes treat ions kinetically.

In order to demonstrate the above points on how the nu-

merics suppress the physical processes, we repeated the cal-

culations presented earlier with different grid sizes for cal-

culating the electric fields. The evolution of S - gll phase

space for different grid sizes is shown in Figures ga to g._,

As = 5A.t for Figures 8a and 8b; As = 20A_ for Figures 8c
and 8d; and As = 100ga for Figures 8e and 8/. The left- and

right-hand columns of Figure 8 show different stages of the

evolution of the ion-ion instabilitywhich occur in the per-
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turbations. For As = 5A_ (Figure 8a and 8b) the instability,
manifested by the vortices, is much more fine grained than

that for As = 20Ad (Figures 8cand 8d!, for which the vortex
formation is quite clear, especially at t = 2200. When As is

increased to IOOAa (Figures 8e and 8f), the instability does

not occur at t = 1800, and at t": 2200 the vortex structure

tends to appear, but is not strong enough to fully couple the

two ion streams. When As is further increased, the insta-

bility nearly disappears, even though the ion streams have

nearly the same bulk properties, such as the flow velocity,

density and temperature.
In order to understand the above feature of ion-ion insta-

bility and its numerical realization, we discuss here briefly its

linear properties. The ion-ion instability is limited to rela-

tively long wavelengths given by A >_ 27rV,_t/%,, where V_r

and wvl are, respectively, the local relative velocity between
the streams and the ion plasma frequency. In the present sit-

uation the relative velocity is about 4V, and %,, _ 0.4% ....

(corresponding to a local density of 0.2 inside the cavity),

giving A >_ 80A,,. However, the waves are strongly excited

near the lower limit on the wave lengths [see Baker, 1973].

Therefore, when As = 5An, the growing waves are properly

described by the numerics because there are several grid

spacings in a wavelength. In Figures 8a and 8b, the size

of the vortices is about 100)_,,. When As is increased to

20A,., the relatively short wavelength waves are eliminated

numerically and those left have a relatively long wavelength.

In Figures 8c and 8d, the vortices are separated by about

200A,l. When As is increased to 100An, the instability is al-

most entirely eliminated by the numerics. However, Figure

8/does show a relatively weak vortex structure, as expected

from the fact that the long wavelength waves, not unaf-

fected by the large grid size, have relatively small growth

rates [Baker, 1973].

The above discussion shows that in order to properly

model the ion waves associated with ion streams in space, a

sufficiently small resolution depending on the ion parallel en-

ergy and plasma density, is needed. For typical energies and

densities in the auroral plasma at relatively high altitudes,

the resolution required is _< 1 km. Therefore large-scale

models even though they may be kinetic, fail to treat the

microprocesses, and results from them under the conditions

of counterstreaming and double streaming must be treated

with caution.

4. CONCLUSION AND DISCUSSION

The main aim of this paper is to study the variety of

plasma processes which can be driven by localized trans-

verse ion heating in a diverging flux tube. Although we

have simulated here an artificial flux tube, the main motiva-

tion for this study is the transverse ion heating occurring in

the Earth's magnetosphere, producing the well-known phe-

nomenon of ion conics. The self-consistent generation and

transport of ion conics, including the driven microprocesses,

are almost impossible to model theoretically because of the

range of scale lengths involved in space plasmas. Therefore,

in order to develop a feel for the possible processes we have

adopted an artificial diverging flux tube, in which effects of

the transverse ion heating on the plasma are simulated. As

described in the previous section, the results from this initial

study are interesting because they show that the transverse

ion heating does not just produce ion conics, it also drives

a host of plasma processes, some of which are revealed here

by the simulation. Among the important processes revealed

are the formation and dynamics of plasma density pertur-

bations, generation of parallel electric fields, multistreaming

of ions, and ion-ion interactions generating oscillating field-

aligned electric fields.

The generation of parallel electric fields by transverse ion

heating is a novel concept. For heating localized to a few kin,

the electric field pulse near the forward shock had upward

fields, it moves upward, and has the spatial and temporal

features of weak double layers. Can such fields account for

weak double layers observed in space [Tcmerin et al., 1982;

Block et al., 1987; BostrJm et al., 198817 At this time this

is an open question and its answer lies in a rigorous scrutiny

of the theoretical results in view of the observed features of

the fields in space. This has not been done here.

The above feature of the plasma perturbations driven by

the transverse ion heating was previously predicted from a

hydrodynamic model for the polar wind plasma flow [Singh,

1992]. However, in that study the spatial and temporal fea-
tures were too coarse to predict the fine temporal and spatial

features of the parallel electric fields obtained here. Figure

6 shows that the spatial size of the electric field pulse is "-

100 m; it moves with a velocity of about 50 km/s and the

corresponding time scale of the pulse is 2 ms.

The double streaming of ions produced by transverse ion

heating is noteworthy. The double streaming occurring in

the midst of the density perturbation is the consequence of

the upward acceleration of some ions by the mirror force

while some ions are being retarded downward by the down-

ward electric field in the reverse shock region. This multi-

streaming produces ion waves generating oscillating parallel

electric fields. The role of such fields in electron heating is

mentionable. However, the present simulation model does

not allow itbecause electronsare assumed to obey the Bolts-

mann law.

The double streaming of ions above the forward shock is

produced by the relatively slow polar wind ions being over-

taken by the fast ions produced by transverse ion heating.

The latter ions have the feature of "elevated" ion conics

[Temerin, 1986; gorwitz, 1986; Hultqvist et al., 1988]. The

double streams on the top of the perturbation do not ex-

cite ion-ion instability because their relative velocity is too

fast. However, the presence of relatively warm electrons ,nay

change this by increasing the ion-acoustic speed.

In the present model, electron dynamics is highly sim-
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pllfied through the assumption that the electrons obey the

Boltsmann law. If this assumption is relaxed, electrons are

likely to be energized by the parallel fields, especially by the

oscillatory fields driven by ion-lon instability. One of the

puzBling observations in space is the simultaneous measure-
ment of elevated ion conics and field-aligned electrons with

comparable energies [Hultqvist e_ al., 1988]. These particle

populations are observed in conjunction with electrostatic

noise in the frequency range from zero to 300 Hz. The sim-

ulations presented here show how a localized heating can

generate the elevated ion conics and the field-aligned electric

fields which are capable of heating electrons in the parallel

direction. If electron dynamics is included in the model,

possibly other wave modes through ion-electron interaction

can be driven. Simulations with full electron dynamics are

needed to see if the puzzling observations by Hultqvizt et

al. [1988] can be explained bY localized ion heating and the

processes driven by it.

We have quantitatively demonstrated here how large-scale

hydrodynamic and kinetic codes suppress the small-scale

features of plasma flow because of their inherent coarseness.
Small-scale simulations which keep the essential features of

the problems in space and, at the same time, have sufficient

spatial and temporal resolutions, can elucidate the impor-

tant microprocesses which effectively control the properties

of the plasma flow. This paper presents an initial attempt

towards the goal of understanding the generation and trans-

port of ion conics and associated plasma processes.

Results presented in this paper are based on assump-

tions such as (1) plasma being quasineutral, (2) electrons

are a massless isothermal fluid, and (3) the simulation is

one-dimensional. We already discussed that for the param-

eters chosen in the present simulations the assumptions 1

and 2 are justified. However, for situations involving other

set of parameters, the results presented here can be only

qualitatively correct. For example, if the heating produces

7
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a large flow velocity approaching the electron thermal ve-

locity, the mssumption of electrons being isothermal is not

justified. This situation requires s more rigorous treatment

of the electron dynamics. We are currently investigating

such situations and results will be reported later.

The assumption of one-dimensional simulation model llm-

its the treatment of the ion-ion instability. In a multidi-

mensional situation, ion beams with relative velocities V, el

> 2C0 can couple together through ion-ion instability [see

Karimabadi et al., 1991]. The coupling occurs through waves

propagating at oblique angles with respect to the flow direc-

tion. The fast ions above the forward shock can participate

in such instability processes. But the present simulation

model is limited due to its dimensionality.

It is worth mentioning here that the hydrodynamic models

have been used to study the transverse ion heating and their

transport [ Ganguli and Palmadesso, 1987; 5ingh, 1992]. The

qualitative comparison of the results from the small-scale

kinetic simulation and the large-scale hydrodynamic model

shows that the latter model can not handle the phenomenon

of ion conics and its transport; the temperatures and the

flow velocity of the ion conics are grossly misrepresented,

This is true despite the fact that the hydrodynamic models

are quite sophisticated based on 16-moment approximation

[Barakat and Schunk, 1982]. The major problem lies in han-

dling the muitistreaming consisting of the ion conics and the

ambient plasma. Large-scale kinetic models [Wilson etal.,

1990; Brown et al., 1991] do aLlow for multistreaming, but

the problem lies in the coarse resolution and the consequent

suppression of microprocesses which can critically affect the

flow behavior. A rigorous treatment of the transport of ion

conics including its interaction with the ambient plasma re-

mains a challenge.
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Plasma Expansion and Evolution of Density Perturbations in the Polar Wind:

Comparison of Semikinetic and Transport Models
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Comparisons are made between transport and semikinetic models in a study of the
time evolution of plasma density perturbations in the polar wind. The situations modeled
include plasma expansion into a low-density region and time evolution of localized density
enhancements and cavities. The results show that the semikinetlc model generally yields
smoother profiles in density, drift velocity, and ion temperature than the transport model,
principally because of ion velocity dispersion. While shocks frequently develop in the
results of the transport model, they do not occur in the semikinetic results. In addition,
in the semiklnetic results, two ion streams, or double-humped distributions, frequently
develop. In the transport model results the bulk parameters, at a given time, often have
a one-to-one correspondence in the locations of their local minima or maxima. This is a
consequence of the coupling of the fluid equations. There is, however, no such relationship
among the moments produced by the semikinetic model where the local moment maxima

and minima are often shifted in altitude. In general, incorporation of enhanced heat
fluxes in the transport model leads to somewhat improved agreement with the semiklnetlc
results.

INTRODUCTION

Numerous models have been developed in the last

" three decades to treat the outflow of plasma from the

"" topside ionosphere. These models fall mainly into

two categories: kinetic descriptions and hydrodynamic

=_ descriptions. Hydrodynamic models were firstformu-

_ lated by Banks and Holzer [1968]. In assuming an
isothermal temperature distribution, they found that

_ the electric field, which is determined by the electron

pressure gradient, is strong enough to accelerate H +

_ and He + ions to supersonic velocities. This and other

related studies [Banks and Holzer, 1969; Marubashi,

1970] established the basic characteristics of the polar

wind, such as the ion density versus altitude and the
outflow fluxes.

_ Realizing that ions become collisionless and their

_- velocity distributions highly anisotropic at sufficiently

large radial distances, Dessler and Cloutier [1969]

proposed a single-particle evaporative polar "breeze"

model as an alternative to the hydrodynamic approach.

They argued that ion acceleration due to the po-

larization electric field occurs at altitudes where the

mean free path is large, and where the ions cannot
be regarded as interacting directly with each other.

They questioned the pressure gradient term in the

hydrodynamic equations of motion and argued that it

cannot be responsible for the acceleration of the light
ions. This led to the famous Banks-Holzer and Dessler-

Cloutier controversy which is discussed in detail by

Donahue [1971].

Since the early theoretical models of the polar wind

were established in the late 1960s and early 1970s

Banks and Holzer, 1968; 1969; Holzer et al., 1971;

and Scherer, 1970; 1971], polar outflows have

Copyright 1993 by the American Geophysical Union.

Paper number 931A00635.
0148-0227/93/93IA-00635 $05.00

been studied through the use the hydrodynamic or

transport [Schunk and Watkins, 1981; Mitchell and

Palmadesso, 1983; Singh and Schunk, 1985; 1986; Gan-

gull and Palmadesso, 1987; Ganguli et al., 1987; Gom-

bosi and Nagy, 1988], ion kinetic [Horwitz and Lock-

wood, 1985; Horwitz, 1987] and semikinetic [Barakat

and Schunk, 1983; Li et al., 1988; Wilson et al., 1990;

Brown et al., 1991; Ho et al., 1992] models.

Transport models involve the solution of a set of N

moment equations solving for N + 1 bulk parameters.

The equation set is closed by expressing the highest
moment as an assumed function of the lower order

moments. The principal advantages of the transport

model include its efficiency in the use of computer

resources (compared to the semikinetic model) and
its ability to easily include chemical and collisional

processes. However, many problems require a detailed

knowledge of the ion velocity distribution function

beyond that which would be available from a transport

model. The ability of a transport model to accurately

describe the velocity distribution increases with the

order of the moment equations employed, but the

highest order equations can be difficult to solve [e.g.,

Gombosi and Rasmussen, 1991]. In contrast, in solving

the Boltzmann equation the kinetic model solves an

infinite hierarchy of moment equations since its results

yield the full distribution function. This however is

achieved at the expense of computer efficiency. As an

approximate solution to the Boltzmann equation one

can solve the gyro-averaged Boltzmann equation by

a hybrid or semikinetic (kinetic ions, fluid electrons)

technique.

In view of the vastly different formulations of the

kinetic and hydrodynamic models applied to the same

geophysical environments by different investigators

over the past two decades, it is necessary to compare

the two approaches in such a way so as to elucidate

the differences, applicability, and limitations of the two

approaches. Except for some limited work done in the

13.581
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early 70's by Hoizer et al. [1971] and Lemaire and
Scherer [1972], recently only Dernars and Schunk [1992]
have compared the semikinetic with the transport
models for the steady state polar wind. Their results
showed close agreement in the density, drift velocity,

parallel and perpendicular temperatures, and paral-
lel and perpendicular heat flows from both models.

They concluded that the bi-Maxwellisn based trans-
port equations are an appropriate tool for studying
space plasmas that develop non-Maxwellian features.
However, good agreement between the steady state
solutions from the two models does not necessarily
mean that they will continue to agree when time
evolving problems are considered.

The purpose of the present study is twofold. First,
and foremost, is to investigate the appropriateness
of using the transport model for dynamic situations,
especially in the coUisionless domain. This part of
the study is accomplished by direct comparison of the
moments produced by a transport and a semikinetic
model. Of particular interest is the question of whether
steep gradient persistence (i.e., shocks) are unique to
the transport model. Another question involves the
consequences of phase' mixing [Palmadesso et al., 1988]
which is disallowed in the transport model because of
the truncation of the moment hierarchy hut is naturally
included in the semikinetic model. Phase mixing
can be responsible for damping thermal waves. By
analyzing the degree of agreement of transport with
semikinetic models, we can assess the appropriateness

of using such transport models in global systems, where
semikinetic modeling is currently not feasible. The
second purpose of this study is to extend the work
of Singh and Schunk [1985] on the study of the time
evolution of density perturbations in the polar wind.
In the present study a more sophisticated transport
model and a semikinetic model are used to study the
same situations considered by Singh and Schunk.

SBMIKINETIC MODBL

The semikinetic model used in this paper is the same
as that developed by Wilson et al. [1990 I. The model is
based on a hybrid particle-in-cell approach which treats
the ions (H +) as parallel-drifting gyrocenters injected,
at the lower boundary, as the upgoing portions of a
drifting bi-Msxwellian distribution. The electrons are
treated as a massless neutralising fluid.

+
We simulate the motion of H in s magnetic flux

tube extending from 1.47 to 10 Rn. Within this

altitude range the plasma is taken to be collisionless.
The ions at the exobase (1.47 RB) are assumed to be bi-
Maxwellian and the upgoing ions of these distributions
are injected into the simulation region. The distribu-
tion function used for injecting new ions at the base of
the flux tube is given by

(rn/27rk ) 3/2
/o(V, > o) =

2kTio ) (1)

fo(Vll < 0) = 0

where the subscripts o represents the various parsJn.
eters of the injected ions at the base of the flux tube,
vll and v± are the parallel and perpendicular velo,
m is the ion mass and k is Boltzmann's

For this study, we use the polar wind parameters
similar to Singh and Schunk [1985] for the injected H +

distribution functions: an upgoing drift speed (u.) of
20 kin/s; a density (no) of 500 ions/cm3; and parallel

and perpendicular temperatures (TII,, T±,) of 3580 K.
The parallel force along the magnetic field line acting

on the ions is

FII = rngll -I- qiEii - #VB (2)

where ql is the charge of the ion, gll is the gravitational

acceleration which varies as 1/r 2, /_ (= _mv_/B) is
the ion's magnetic moment, and Ell is the polarisation
electric field parallel to the magnetic field, B. B is
assumed to vary as r -3. The term -#VB is the
magnetic gradient or magnetic mirror force. The
assumed constancy of # determines the perpendicula_
speed v±.

By assuming that the electrons are isothermal and
have 7.ero mass, the electric field is given by the
Boltzmann relation

kT_ dn,
Ell = nee dr (3)

where k and • are the Bolt_.mann constant and the

magnitude of the electronic charge, Te is the electron

temperature taken to be the same as the ion temper-
ature at to, and n_ is the electron density which is
assumed to be equal to the ion density.

TRANSPORT MODEL

The collisionless transport equations governing the
magnetic field aligned gyrotropic motion of ions are the
equations of continuity, momentum and parallel and
perpendicular thermal energy given by the following:

On _ -nv aA
+ _--_s(nv) - A as (4)

(-_)E, (-_)-_ k l an= - -

- g,(,-) - - T± A 0s (5)

OTII 0 Ov 1 00--£+ ,,o = as as(q,A)
10A

+ 2q± _
nA Os

(6)

aT± O,,  _Oa 1 Oa---_- + (vT± ) = T± o-s - T± v Os nA _-s (q± 4)

1 aA

-- qi nA as (7)

where t is time; r is the geocentric distance to the
point along the flux tube, s is the distance along the
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tube from its lower boundary, n,v, Tl I, Ti, qlt and

ql are the number density, flow velocity, parallel and

perpendicular temperatures and heat flows of the polar
ind ions, respectively. EiI is the parallel electric field

{found from equation (3)), glL is the component of the

gravitational force parallel to the magnetic field, rn,

q, and k are the ion mass, ion charge and Boltzmann
constant, respectively. A is the cross-sectional area of

a _ux tube (A oc rJ).

't'his set of differential equations is solved numerically

by the flux-corrected transport technique [Boris and

Book, 1976] and are closed by using heuristic expres-
sions for the heat flow qll and q±, which closely follow

the treatments in the solar wind studies [Metzler et al.,

1979]. In a collisionless plasma, the usual expression
for heat flow, given by q_ = -Kc, VT_, with Ko

(where a denotes II or _l_) as the thermal conductivity

may not be valid because the mean free path _ >>

(T-XDT/Os)-I. In such a situation the maximum
heat flow may be given by the transport of thermal

energy (nkTa) by the unidirection parallel thermal

velocity Vth -- (kTII/21rrn)_ [Palmadesso et aI. 1988].

/accordingly, it can be shown that (N. Singh et al.,

(omparison of hydrodynamic and semikinetic models

t .r plasma flow along closed field lines, submitted to

Journal of Geophysical Research, 1993), 1993]

qa ----erk, nkTavttLi (8)

where e = -1 if OTc,/Os > 0 and • = 1 if OTc,/as < O.

Thus, the temperature gradient determines the sign

of the heat flow but not its magnitude. The factor

0,, gives the reduction in heat flow due to anomalous

plasma effects. In the present calculations we cannot
determine the value of r/_ self-consistently. We study

the effect of the heat flow on the results by varying

the values of rl,,. Gombosi and Rasmussen [1991]

.temonstrated that in order to get realistic distribution

unctions from the 20-moment model, the heat flow

must be small compared to the thermal speed times the

pressure. In this paper, r/a = 0 represent no heat flow,

while fT, = 1 corresponds to the theoretical maximum

heat flow. However, since (8) is only a heuristic

equation, we will take the liberty of using values for r/_

larger than unity to study the effect of large heat flow
in a later section of this paper. Although the above

expression for heat flow is a simplification it allows

the inclusion of heat flow in the study rather easily

and produces reliable results at least for steady state

(Figure 1). As such it is used as a preliminary study
before the full heat flow transport equations can be

implemented.
Before we compare the results of the two models

for the time-dependent cases, we shall first compare

the steady state polar wind results. Figure 1 shows

the density, drift velocity, parallel and perpendicular

(to the direction of the magnetic field) temperatures,

and parallel and perpendicular heat flows of the steady

state polar wind solutions with boundary conditions

given in the last section. The results of the two models

show good agreement in general. The drift velocity

obtained from the transport model (solid curve) is

higher than that of the semikinetic model. This

13.583

discrepancy also appears later when we show the time
evolution of the drift velocity. The reader should keep

this in mind in subsequent comparisons.

The density, drift velocity, and perpendicular tem-

perature of the transport model results are little

affected by the choice of the heat flow parameter _a in

equation (8). However, both a higher parallel and per-

pendicular heat flow increase the parallel temperature.
We found that a value of 0.3 for both r111and _?j. gives

the closest agreement between the parallel temperature

profiles of the two models. In a later section of this

paper, we shall discuss in more detail the effects,
on the various moments, of varying the parallel and

perpendicular heat flows in a time-dependent situation.
With our particular choice of the amount of heat

flow (r111 = T?± = 0.3), there is a cross-over at 5.5 RB
for the parallel heat flow profiles from the two models.

Below the cross-over the parallel heat flow in the

transport model is higher than that of the semikinetic
model. Both the parallel and perpendicular heat

flows obtained from the semikinetic model increase

sharply near the lower boundary, and then decrease
with altitude above 1.7 Rs. The transport model used

in this particular paper failed to produce this feature.
Demurs and Schunk [1992] used a 16-moment transport

model which produced a sharp bend in the heat flow

profiles at low altitude. This could be due to the
inclusion of collisions in their transport model and/or

their use of the full heat flow equation to solve for

q_l and q±. Their semikinetic model did not produce
t_e low altitude heat flow bend when they assumed a

Maxwellian velocity distribution at the boundary, but

it did when the distribution was a bi-Maxwellian with

zero stress. It should be noted that Demurs and Schunk

[1992] compared the steady state polar wind model to

about 2.9 R_ while a flux tube extending to 10 Rs is

used in this paper.

EXPANSION oF THE POLAR WIND

INTO A Low DENSITY PLASMA

Satellite observations indicate that the ions in the

magnetosphere of ionospheric origin are much more

energetic than those in the ionosphere [Baugher e_ aI.,

1980; Horwitz and ChappelI, 1979]. The energization
of these ionospheric ions can be explained in terms

of various mechanisms, one of which is connected

with the outward expansion of the topside, high-

latitude ionospheric plasma along open geomagnetic

field lines [Singh and Schunk, 1982, 1986]. In this

section we study the time evolution of the polar wind

expanding into a low density region. The study will be

conducted using both the semikinetic and transport

models described earlier. Our initial conditions are
the same as used by Singh and Schunk [1985], who

assumed a sudden drop of plasma density above a

certain altitude. Note that the initial conditions we

used here (and subsequent sections) may not represent

real physical situations. We are mainly interested in

the comparison of the results of two different models

under the same conditions. Our results, however, are

important to the study of the time evolution of density

perturbations in space plasmas in general, irrespective

of the initial boundary conditions.

I
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At time t = 0, the density of the steady state polar

wind was lowered to 0.5 ions/cm 3 at and above an

altitude of 9000 km (density profile to, Figure 2a).

The plasma was then allowed to evolve in time using

both the semikinetic and transport models. Bulk

parameters were calculated from the ion distribution

function in the semikinetic model at the same selected

times at which bulk parameters from the transport

model were output. The transport model used for

its initial conditions bulk parameters obtained from

the semikinetic model at to. Profiles of the density,

drift velocity and parallel temperature, at different

times, from both the semikinetic (dotted curves) and

transport (solid curves) models are shown in Figure 2.

The profiles in Figure 2 are separated by a time of 5
min.

The density profiles from both models can generally

be broken down into three regions, which are indicated

by a, b and c on profile tl. Region a (r < 3 R,_) is the

unperturbed polar wind solution, region b (3 - 4.5 Rs)

is the polar wind expansion into a region of low density

plasma, and region c (r > 4.5 RB) is the region of low
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Fig. 2. Comparison of the time evolution of density,
drift velocity, and parallel temperature for H + polar wind

expansion into a low-density region, from the semikinetic
and transport models, to is the initial time, the next three
profiles represent time _-_---5,I0, and 15 mins respectively.

density plasma still flowing upwards. Region a expands

in altitude range as time advances because the polar

wind is being continuously supplied from below the

lower boundary. The perturbation propagates upward

while the density profile returns to the steady state

solution. As the plasma in the low density region

(region c) moves upward its density decreases because

of the divergence of the flux tube. In a 15-rain period
the density at the upper boundary drops by about half.

In region c the bulk drift velocity also decreases slightly
from the steady state value because the electric field

goes from being zero to being slightly negative because
of the positive density gradient.

To understand the region of plasma expansion (re-

gion b), it is helpful to examine the ion distribution

function. Figure 3 shows the reduced distribution

function which is the ion distribution integrated over

all perpendicular velocities and plotted in a phase

space of parallel velocity versus radial distance. This

distribution is displayed in a gray-scale format such

that darker shades represent higher density. At t = 0,

the electric field at the high/low-density boundary is

very large because it is proportional to the initial large

gradient of the density. This electric field accelerates
ions in both the high- and low- density regions imme-

diately adjacent to the density interface. These ions

flow upwards and disperse in time. As they do, the

density gradient and the large associated electric field

diminish. Also, the dispersing ions produce a region

of elevated parallel velocity, and a region where the

parallel temperature is first reduced below and then

elevated above the steady state temperature profile.

The region of elevated drift speed is simply a result of

the many high speed particles from below overtaking

the slower ions above them. The region of temperature
reduction occurs where ions are cooled by acceleration
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50
40

_8 30

20

oi

(a)

, . i . L . J .

2 4 6 8 10

(b)

60

,,_ "'" & ,. ..::::"

• " " . '_:_:_:i::;i:i.:

__ 20

10,, t = 15 min.

0

2 4 6 8 10

Geocentric Distance (R_)

Fig. 3. Distribution function for H + polar wind expansion
into a low density region at (a) t=--0and (b) t=15 mins. The
phase plot isin gray scalein which a darker shade represents
a higher density.
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through the large interface potential drop. The region

of temperature enh&ncement develops where two ion
streams exist. The altitudinal extent of each of these

regions expands in time because of velocity dispersion.
The transport model results are very similar to

the semikinetic model results in region a and c, but

there are significant differences in the transition region
b. A sharp and persistent density jump develops

at the upper edge of this region. At the same

location there is an abrupt jump in the drift velocity

and parallel temperature. This shock propagates

upwards with a speed of about 38 km/s which is

consistent with the Rankine-Hugoniot relation [Singh

and Schunk, 1985]. As this shock moves upward a local

density minimum develops below it. This region of

minimum density--where the maximum drift velocity

and parallel temperature occur--behind a forward

shock is a reverse shock [Sonett and Colburn, 1965].

Nothing corresponding to these features are seen in the

sere]kinetic bulk parameter profiles. They are smooth

and continuous throughout this region.
The parallel ion temperature obtained from the

transport model also has a leading elevated value and

a trailing suppressed value; however, this wave feature
moves up the flux tube mote slowly than the similar

feature seen in the sere]kinetic temperature results.

Velocity dispersion plays an important role in creating

this difference. The first ions to reach a given altitude

are ions with high velocity. When they first arrive,

however, they make up only a small fraction of the

total number of ions present. Their contribution to the

local bulk moments become more pronounced as their

velocity, raised to increasing powers, starts to outweigh

their small relative numbers. One would then expect

to see increasing disagreement among transport sad

semikinetic model moments with increasing moment

order, to the degree to which the transport model does

not properly describe the effects of velocity dispersion.

In the case under discussion here, the disagreement is

quite pronounced starting at the parallel temperature
moment.

The shock in the results of the transport model

in Figure 2 can be seen as discontinuous jumps in

the density, drift velocity, and parallel temperature.
Clearly, the values of all three of these moments are

tightly coupled at the location of the shock. In

figure 4a one can see the density, drift speed and

parallel temperature profiles from the transport model

at t = 15 min. In addition to the correlation among
the moments evident at the shock, other instances of

correlation (such as the point where the maximum

drift speed and parallel temperature occur) can be

seen. This correlation is, of course, a consequence
of the coupled nature of the differential equations in

the transport model. The semikinetic model results

display no such correlation among the moments as

can be seen in the profiles in figure 4b. This is

a consequence of phase mixing where kinetic effects
damp waves generated by the initial perturbation. In

the transport model such waves persist because the

truncated moment set does not allow phase mixing.
The temperature elevation of the semikinetic model

(e.g., between 7 and 10 RIB at t = 15 min in Figure 2c) is
the "effective temperature" that results when the ions

in the low density region and the ions in the high speed
stream are counted as one population• Such "effective
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temperature" is not found in the transport results when
only one ion stream is simulated. Multistream fluid

codes can be implemented for streams originating from
specified sources, however, such codes cannot model

plasmas which develop multiple streams during the
course of the simulation, unless the locations and times

where such streams will develop can be anticipated.

Like the density profile, parallel heat flow (parallel
thermal energy per unit area per unit time) shows

_udden drop at about 2.4 RI at t - 0 when the

F rturbation is first imposed (not shown). However,
the parallel and perpendicular heat flow per ion retain
the same profile at t = 0 as that of the steady state
polar wind because the distribution function remains

exactly the same as the steady state polar wind at
t = 0 except for a uniform number density above 2.4
Rs. (In the following we shall restrict our discussion
to the heat flow per ion as it is found to be more

illuminating.) Figure 5 shows the parallel heat flow
per ion at time _ = 15 rain. The semikinetic profile
(dotted curve) has a negative heat flow from about 6.2

to 8.1 Rs which corresponds to the positive slope of the
parallel temperature as seen in Figure 4b. It also has
positive heat flow above and below this region where
"_e parallel temperature has a negative slope. One can

• _;e from this that the semikinetic results support the
idea that the sign of the heat flow depends on the sign
of the slope of the temperature, as used in the transport
model formulation (Equation (8)).

The parallel heat flow calculated from the transport
model (solid curve) also has a local minimum and max-
imum around 7.4 Rs. The direction of the heat flow is

determined by the slope of the parallel temperature as
required by (8). The magnitude of the local minimum

and maximum heat flow is about an order of magnitude
less than that obtained from the semikinetic model.

Transport model

................. semikinetic model

.....-.-".--:;;:-"-:............,....,.......

0 5x10 "17 lxl0"_

Parallel Heat Flow (ergs/cm2/s/ion)

Fig. 5. Comparison of the parallel heat flow of the
semikinetic and transport model at t=15 mins for the case

of H+ polar wind expansion into a low-density region.

An increase of _ in (8) will make the comparison of
the heat flow of the two models more favorable. Later
on, we shall see that a larger heat flow will result in
a better agreement of the lower moments also. The

reader should bear in mind that the value of r/_ use
here (_,, - 0.3) was chosen so that the steady state

solutions of both models would be as close as possible.
The effect of varying 77_ on the transport model results,
will be discussed later.

EVOLUTION OF A LOCALIZED DENSITY ENHANCEMENT

The Earth-space environment is a region of dynamic
plasma phenomena. Both heavy and light ions are
created and destroyed through photoionir.ation and
charge exchange in the ionosphere, and are contin-

uously transported throughout the magnetosphere.
One should therefore expect to find regions in the
magnetosphere where the plasma densities are high and
regions of relatively low density. For instance, density
enhancements at high altitude could arise from electric

field heating at low altitudes [Hul_qvis_, 1991] followed
by the upward propagation of the hot plasma to higher
altitudes. Recently $ingh [1992] has shown that plasma
enhancements and cavities can be created by transverse
ion heating via wave-particle interactions. In this
section, we will investigate the time evolution of a
localized plasma density enhancement in the classical
supersonic H + polar wind.

The density of the imposed plasma enhancement is
given at time t = 0 by

= (9)

where np,,(r) is the steady state polar wind density.
n_,,h(r) is therefore a Gaussian distribution along r
with a peak value of p times rzp,, at r -" rp. We chose p,

and rp to be 5, 1260 km and 15600 km respectively.
The plasma density enhancement has zero flow velocity
initially and has an ion temperature of 500 K for both
TII and Ti.

The density, flow velocity and paral]el temperature
of the semikinetic model at t - 0, when the density
enhancement was first introduced, are given in Fig-
ures 6a, 6b and 6c and are marked by to (Dotted curve).
Again, the plasma distribution function in parallel
velocity and radial distance phase space, as shown in
Figure 7, are used to interpret the various bulk pa-
rameters. The stationary plasma density enhancement

causes the net bulk velocity to decrease to about 4 km/s
at the peak of the density enhancement, compared
to 23 km/s for the steady state polar wind (dashed
curves). The double peak in the parallel temperature
profile at t - 0 can be explained in the following way.
When nearly equal populations with a relative drift
exist, the parallel temperature will be associated with

the separation, in velocity space, of these populations.
When either population is dominant, the temperature

will be approximately that of the dominant population.
At 2 and 2.8 RB the density of the imposed plasma
population is comparable to that of the polar wind. At

the center of the imposed population, at 2.4 Rs, the
imposed ion density exceeds the polar wind background
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Fig. 6. Comparison of the time evolution of density,
drift velocity and parallel temperature for a cold density

enhancement in the H + polar wind from the semikinetic
and transport models. The initial conditions for the drift
velocity and parallel temperature in the transport model are

calculated by using equations (10) and (11). The parallel
temperature, according to the transport model, decreases at
the location of the density enhancement, opposite to what
occurs in the semikinetic model.

density. Where these two different populations have

near equal numbers the effective temperature is the

highest. At points where one dominates the other

the effective temperature tends toward that of the

dominant population.

The density profiles obtained by the semikinetic

model (dotted curves, Figure 6a) show that the density

enhancement flattens out with time. This is due in

large part to the distribution of ion velocities (both pos-
itive and negative) in the density enhancement. This

dispersional flattening of the density enhancement can

be seen in the phase plot in Figure 7b where the density
enhancement is now very elongated. The electric field

modifies the dispersion of the enhancement because

above and below the density peak it has opposite signs

(as a result of opposite density gradients). Above the
peak it is positive and accelerates the ions upward,

while below the peak it is negative and accelerates the

ions downward. The downward flowing ions increase
the_density of the plasma at the lower boundary, and

lower somewhat the flow velocity of the plasma.

In comparing with the results of the semikinetic

model in a consistent manner, one could use in the

transport model the same initial bulk parameter pro-

files as produced by the semikinetic model. However,

in a single-fluid treatment, the initial parallel tem-

perature profile of the semikinetic model would be

interpreted as a warm density enhancement. In order

to find out how a cold density enhancement would

evolve under a hydrodynamic treatment, we use the

transport model with initial conditions established by

the usual definitions for a single fluid:

o - novo + n,vl (10)
no + nx

(a)

40
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_ 0
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(b)
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Fig. 7. Distribution function for a density enhancement

in the H + polar wind at (a) t=0 and (b) t=15 rains. The
phase plot is in gray scale in which a darker shade represents
a higher density.
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_l'_, = noTao + nlTax (11)
no + nx

where 9 and _a are the average flow velocityand ion

temperature and a stands forIIor_L.The "0" subscript
denotes the polar wind while the "1" subscript indi-

catesparameters of the density enhancement. In (10)

and (11), nl = nenh --na_,, vl = 0 and Tax = 500 K.
_, ,ese initial profiles are shown in Figure 8 (solid curve,
i -- 0). The velocity profile at t = 0 obtained from (10)
is very close to the semikinetic model initial profile,
however, the parallel temperature profile at t = 0 has a
minimum value at the peak of the density enhancement
which indicates that the density enhancement is cold.

It is necessary to point out that the discrepancies of
the two models at the lower boundary are due to the
difference between the way the boundary conditions
are handled in each case. In the transport model the

density, the drift speed, and the parallel and perpendic-
ular temperatures have specified unchanging values at
the lower boundary. In the semikinetic model only the
distribution of upgoing ions at the lower boundary is
held fixed. The velocity distribution of downgoing ions

t the lower boundary is determined by what happens

the flux tube, and as a result, will change with time.
The moments found from integrations over the total

velocity distribution (upgoing and downgoing ions) will
also change. The increase in the density, the drop in the
drift speed and the rise in the parallel temperature seen
in the semikinetic results at the lower boundary result

"from part of the ions from the density enhancement
population falling out of the base of the flux tube.

In the various transport bulk parameter profiles

seen in Figure 6 a number of small scale features
develop. The number of these features increases with
time. They are also seen to move upward with

varying speeds. Although we have not done the wave
analysis of the transport model used in this paper,
we believe that these features result because of the
excitation of several fundamental wave modes by the

initial perturbation. (It is likely that these wave modes
will be different from those discussed by Gombosi and

Rasmussen [1991] because of differences between the
transport model used in this paper and the 20-moment
expansion of Gombosi and Rasmussen.) Differences
in the phase velocity of the different modes lead to
the development of increasing numbers of small-scale
features. If a transport model solving the heat flow

equations were used the solution would change no
doubt; the old wave modes would be modified and new
ones would be introduced. Since the semikinetic results

do not develop the same small scale features as are

produced by the generalised transport model used in
this paper, it is clear that most of these wave modes
are spurious. Phase mixing in the semikinetic model is
responsible for their elimination.

We have also compared with the semikinetic results,
the results from the transport model when its initial

parameter profiles are taken to be the same as those
produced by the semikinetic model at t = 0 [IIo e_
aL, 1993]. Although in this case, an imposed cold
plasma (semikinetic) and a warm plasma (transport)
are compared, it is interesting to note that the re-

suits are closer than the case when a cold plasma

enhancement (_ccording to equations (I0) and (II))
is used. Furthermore, Ho et al. [1993] show that when
s strong heat flux was induced artificially by increasing
the value of _,, in (8), the shocks are eliminated and
the results of the transport and semikinetic models are
much closer.

EVOLUTION OF A LOCALIZED DENSITY CAVITY

In this section, we study the time evolution of a
localizeddensity cavity in the steady state H + polar

wind. The cavitywas created by decreasingthe density

of the plasma along r by

= (12)

where p = 0.9, _ and rp have the same meaning and
values as in case of the density enhancement (1260

and 15,600 km respectively). The density profile to
in Figure 8a is therefore given by

.(r) = - n,.. (13)

where mr,,, is the density of the steady state polar wind.
Since the ion distribution is unchanged, the velocity

and parallel temperature at _ = 0 when the cavity is
created are the same as that of the steady state polar

wind (to, Figures 8b and c).
For the semikinetic model, the cavity propagates

upward, becomes less deep, and extends over a larger
altitude range in time. The cavity propagates with
an average speed of about 30 km/s. From the ion
distribution function (Figure 9), the cavity is seen to
lean towards the abscissa in time. This is again due to

velocity dispersion and explains the spreading out of
the cavity in time.

The drift velocity and the parallel temperature pro-
files can also be readily interpreted by inspecting the
ion distribution function. For instance, at t = 15 min,
the reduced number of low-velocity ions near 5 Rs

(Figure 9b) causes a higher bulk velocity at that
altitude, while the loss of ions at the high-velocity end
around 7 Rs causes a lower bulk velocity there. The
resultant velocity profile is a rounded double-sawtooth
structure (Figure 8b, dotted curve).

At t = 15 min, the parallel velocity distribution
function at 4.5 Rs and 7.5 Rs is narrower than at other
altitudes which results in lower parallel temperatures
there. Note that the locations where the velocity
has a local minimum and maximum do not occur at
the same altitudes as where the parallel temperature

minima occur. (In the transport model results these
locations do line up.) Sandwiched between the two low

temperature regions is & region of higher temperature
(about 1.6 times that of the steady state polar wind)
The high temperature is a result of the double-humped
distribution formed by the cavity seen in the phase
space plot (Figure 9b). These structures, in both the

velocity and parallel temperature profiles, propagate
upward in time and become less sharply defined due to

ion dispersion.
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H + polar wind, from the semiklnetic and transport models.
Here to is the initial time, the next three profiles represent
time t=5, I0, and 15 minutes respectively.

The density profiles from the transport model are

significantly different. Figure 8a (solid curves) show
that within 5 rain after the local density cavity has

been created, the cavity is being fined with ions to

form two separate cavities. These cavities propagate

upwards with speeds of 22 and 33 kin/s, respectively,

getting further and further aparL The velocity profiles
of the transport model also develop a double saw-tooth

structure as in the semikinetic case. However, the

velocity enhancement (lower "tooth") and depression

(upper "tooth") are separated more and more in time

and are linked by a region where the velocity returns to

the unperturbed steady state value. It is important to
note that the location of the velocity enhancements and

depressions correspond to the secondary cavities in the

transport model results while for the semikinetic model

they correspond to the inner wails of the original cavity.

Note also that the overall discrepancy of the velocity

profiles of the two models at later time is due to the
discrepancy of the two models in flow velocity in steady

state (see Figure Ib). The time-dependent behavior of

a cavity in a plasma obtained by the transport model

is similar to the results of Singh and 5chunk [1985].

Figure 8c compares the parallel temperature of the
cavity in the polar wind obtained by both the semiki-

netic and transport models. In comparison to the

semikinetic model, the parallel temperature of the

transport model shows the same structure of a high

temperature region sandwiched between two low tem-

perature regions. However, the transport model paral-

lel temperature does not spread out as much and the

low and high temperature regions remain distinct with

magnitudes that decrease with time.

EFFECT OF HEAT FLOW ON THE

TRANSPORT MODEL RESULTS

The values for 1711and r/± used for the heat flow in
(8) for all the cases we have studied so far is 0.3. This

>
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Fig. 9. Distribution function of a density cavity in the
H + polar wind at (a) t----0 and (b) t=-I5 rains. The phase
plot is in gray scale in which a darker shade represents a
higher density.
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c: the transport model.

value gave the best comparison between the semikinetic
and transport models at steady state. For steady

state, the amount of heat flow was found to have a

negligible effect on all of the bulk parameters except

the parallel temperature. Figure 10 shows that the
exclusion of heat flow in the transport model (_a = O)

causes the parallel temperature (dotted-dashed curve)

to be lower than the semikinetic model (dotted curve)

at steady state. We found that both the parallel and

perpendicular heat flow can increase the polar wind

parallel temperature. When _711- 1, T_t (dashed curve)
was brought close to the curve of the semikinetic model,

_vhile rT.L = 1 alone yields an even higher T_I (dashed-

dotted-dotted-dotted curve). When both _?H and _±

equal one the highest _/(solid curve) results. It is
about 500 K higher at the upper boundary than the

case without heat flow. The fact that qi can affect TII

can be seen from equation (6), in which the last term

converts transverse energy to parallel energy by means

of the mirror force. In comparison with the qll term,

q± has a larger effect on TII because the term which is

dependent on qll in equation (6) can be broken down
into a negative and positive term. The negative term

decreases T H for increasing qll, while the positive term

is proportional to 0ql I/0s, and has & magnitude smaller
than the term which depends on q±.

Although the amount of heat flow has effects only on

the parallel temperature st steady state, we found that

it can greatly affect various other bulk parameters in a

time-dependent situation. By increasing the heat flow
the sharpness of the shocks is reduced and smoother

bulk parameter profiles are produced. This can be seen

from Figure 11 which shows the density and parallel

temperature for different heat flow parameters _a, at

a time of 15-rain after the density enhancement was

imposed on the steady state H + polar wind. When _11

and 71± both equal 1 the shocks produced by the density
enhancement are reduced in comparison to the case

when there is no heat flow {dashed curve in comparison

to dashed-dotted curve, Figure 11). We have seen f_om

Figure 5 that the heat flow from the semikinetic model
can be about an order of magnitude larger than that

of the transport model when _ll and _1± is taken to be

0.3. By using large values of _/11 and _± (7.5 for the

solid curves in Figure 11), the heat flow obtained from

the transport model is increased by 25 times, and the

magnitudes of the heat flow from the two models are

closer.

In allowing r_ll and rl± to be larger than 1 we have
violated the original assumption that the heat flow

cannot be larger than the pressure times the thermal

speed [Gombosi and Rasmussen, 1991]. However, since

(8) is only a heuristic formula, there is in p_actice
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Fig. 11. Density and parallel temperature from the semikinetic model (dotted curve) and the transport
model with r/ll and r]± given the value of 0 (dot-dashed curve), 1 (dashed curve), and 7.5 (solid curve).
These profiles are for a density enhancement case at t_-15 rain.
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no limit on the magnitude of _711 and 77±. It is
shown in Figure I1 that the sharp gradient structures

of the transport model profiles are reduced when

increasing values of rill and O± are used. The results
obtained by the transport model for large heat flow
are closer to those of the semikinetic model. There

are situations when the hydrodynamic shocks can be

totally dissipated by a large heat flow, this is found in
the case of a warm plasma imposed in the polar wind

[Ito et al., 1993].

The values of the heat flow parameters 7711and rT±

which were chosen to give a favorable comparison be-

tween the transport model and the semikinetic model

at steady state have been shown to be too small for

a evolving cold plasma density enhancement. This

implies that a more sophisticated form of heat flow
equations such as the full heat flow transport equation

may be needed for a more accurate comparison. The

results obtained in the present study, however, give

strong evidence that heat flow, or even higher-order

moments, are able to reduce the sharp gradient features

of the transport model profiles. This should be true

regardless of the form of the heat flow equation being
used.

DISCUSSION AND CONCLUSION

Closing the set of equations in the transport model
by use of an heuristic heat flow expression, we have

shown, as have Demurs and Schunk [1992], that the

transport and semikinetic models agree reasonably well

up through the heat flow moments, in steady state

with supersonic flow. However, for time-dependent

situations, drastic disagreements occur, even for the

lowest-order moments. One of the main differences

between the two models is the development of shock

fronts in the transport model. The semikinetic model

produces smooth profiles in general, and the initial per-

turbation in the density and the other bulk parameters

smooths out and diminishes in magnitude with time,

returning rapidly to the steady state solution. Another

difference between the results of the two models is that

the correlation between the location of local maxima

and minima seen in the results of the transport model

are not seen in the semikinetic model. Additionally,

the transport model may, under certain circumstances,

develop various small scale features which are not seen

in the semikinetic results. One of the main reasons

for these differences is that the semikinetic model

properly includes the effects of velocity dispersion

up through the higher velocity moments. It also

includes the process of phase mixing, which is a thermal

wave damping mechanism [Palmadesso et al., 1988],

which acts to smooth profiles and eliminate snlall-scale

features.

In examining the general structure of various bulk

parameters obtained by the two models, the fact that

the semikinetic results are smoother as a result of

velocity dispersion and phase mixing leads to the

argument that the shocks seen in the transport model

results are an artificial consequence of the lack of

these processes in the transport model. Without

the cross boundary relief that these two processes

provide, the density, velocity and temperature of two

adjacent regions can maintain very different values

(i.e., a shock front). This view is supported by the fact

that the results of the transport model are smoother

when a higher heat flow is introduced artificially.

One may argue that the discrepancies between the

semikinetic and transport models may be due partly

to the inability of equation (8) to properly describe the

heat flow, and that therefore, the heat flow equations

should be included in the transport model equation

set. As discussed by Palmadesso [1988] and Gombosi

and Rasmussen [1991], such a higher order model

would still generate spurious waves since it lacks the

higher moments needed to include full phase mixing.

However, the solutions from such a model would differ

somewhat from the transport model results presented

in this paper, and might be closer to those of the

semikinetic approach.

Much of the difference between the results of these

two models is due to the fact that the transport model

encounters difficulty in handling multi-streaming ion

distributions. Although transport equations can be

formulated to simulate multiple ion streams, this ap-

proach is useful only when the origin of the ion streams

are known in advance. In many time-dependent

situations, processes in the evolving system generate

separate streams. The semikinetic model handles the

development of these streams naturally.

One of the attractive features of the semikinetic

model is that the additional information contained in

the velocity distribution function makes it very easy

to understand why certain features are seen in the

bulk parameter profiles. For example, the increase

in bulk velocity in a certain region is usually due to

the presence of high-velocity ions, as in the plasma

expansion into a low density region case, or due to the

reduction of low-velocity ions as in the propagation of

an ion depleted region case. On the other hand, the

decrease of bulk velocity could be due to the presence of

a second stream of low-velocity plasma, as in a density

enhancement case, or the reduction of high-velocity ion

as in the density cavity case. In the same way, the

elevation of the ion temperature in various regions is

often due to the presence of a second stream of ions and

the depression of the temperature can be a consequence

of the narrowing of the velocity distribution in these

regions or the presence of a dominant low temperature

population.
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